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a b s t r a c t 

A novel chaotic memfractor oscillator with one unstable equilibriums is proposed. Various dynamic prop- 

erties of the proposed system are derived and investigated to show the existence of chaotic oscillations. 

The fractional order time delayed model of the chaotic memfractor oscillator is derived considering time 

delay in the memcapacitor. Bifurcation of the time delayed system with its delay factor is investigated 

along with the parameter space bifurcation. A novel methodology for synchronizing identical time de- 

layed systems with an uncertainty in the slave system is proposed and tested with the proposed time 

delayed fractional order chaotic memfractor oscillator. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

The fourth circuit element popularly known as memristors was 

first postulated by Chua in 1971 [1] . Until 2008 when researchers 

of HP labs fabricated a solid state implementation of memristor, 

none was known much about memristor realization [2] . Since 

then many other memristor models have been introduced [3–6] . 

Memristors are considered to be highly nonlinear with non- 

volatile characteristics and can be implemented with nano-scale 

technologies [3–6] . To design memristor oscillators, a new kind 

of nonlinear circuits with oscillatory memories and periodically 

forced flux controlled memductance models are investigated [7,8] . 

Memristor based chaotic oscillators are widely investigated in 

the last one decade. Circuits with two HP memristors in antiparal- 

lel is demonstrated showing a variety of chaotic attractors for dif- 

ferent values of components [9] . A current feedback op amp based 

memristor oscillators is analyzed and simulation results are inves- 

tigated [10] . A simple autonomous memristor based oscillator with 

external sinusoidal excitation is used to generate chaotic oscilla- 

tions. A discrete model for this HP memristor is derived and imple- 

mented using DSP chips [11] implementing memristor. Recently a 

new hyper chaotic system with two memristors is investigated and 

its application to image encryption is analyzed. The correlation and 

ant attack capability between adjacent pixels are investigated [12] . 
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Practical implementation of memristor based chaotic circuits 

with off the shelf components is desired for real time applications 

[13] . Memristor based chaotic circuit for pseudo random number 

generation are analyzed with applications to cryptography [14] . 

Memristor based chaotic circuits for text and image cryptography 

is investigated and the correlation analysis shows the effectiveness 

of the proposed cryptographic scheme over other encryption 

algorithms [15] . Memcapacitor based chaotic circuits with a HP 

memristor is proposed and analysis the proposed oscillator is 

implemented in DSP for further applications [16] . 

Recently many researchers have discussed about fractional 

order calculus and its applications [19–21] . Fractional order non- 

linear systems with different control approaches are investigated 

[22–24] . Fractional order memristor based no equilibrium chaotic 

and hyperchaotic systems are proposed [17,18,40,41] . A novel 

fractional order no equilibrium chaotic system is investigated in 

[25] and a fractional order hyper chaotic system without equi- 

librium points is investigated in [26] . Memristor based fractional 

order system with a capacitor and an inductor is discussed [27] . 

Numerical analysis and methods for simulating fractional order 

nonlinear system is proposed in [28] and matlab solutions for 

fractional order chaotic systems is discussed in [29] . 

Many synchronization methodologies have been reported in 

literatures [68–70] . The synchronization of chaotic and hyper- 

chaotic systems has many applications like secure communications 

[31–32] , cryptosystems [33–34] , etc. Synchronization of fractional 

order chaotic systems for orders between 1 ≤ q ≤ 2 was discussed 

in [30] . Adaptive synchronization of the chaotic and hyperchaotic 
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Fig. 1. Memcapacitor based chaotic oscillator. 

systems with unknown parameters using sliding mode control 

and PID control are also discussed optimized by genetic algorithm 

[17,18,35–37] . Finite-time chaos synchronization of fractional-order 

chaotic and hyperchaotic systems using fractional nonsingular ter- 

minal sliding mode technique was also discussed in literature [41] . 

Most of the error dynamics stability is analyzed with Lyapunov 

stability theory [38,39] . Various methods of fractional order time 

delayed synchronization with sliding mode [63] , active control 

[64] , ring connection synchronization [65] , lag synchronization 

[66] and generalized synchronization [67] was also discussed in 

the literatures. 

The three main approaches derived to solve fractional-order 

chaotic systems are frequency-domain method [42] , Adomian 

Decomposition Method (ADM) [43,47,48] and Adams–Bashforth–

Moulton (ABM) algorithm [44] . The frequency-domain method 

is not always reliable in detecting chaos behavior in nonlinear 

systems [45] . On the other hand, ABM and ADM are more accurate 

and convenient to analyze dynamical behaviors of a nonlinear sys- 

tem. Compared with the ABM, ADM yields more accurate results 

and needs less computing resources as well as memory resources 

[46] . 

2. Problem formulation 

Several memcapacitor models, including piecewise linear, 

quadric and cubic function models, memristor-based memcapac- 

itor models are discussed in several literatures [51–54] . Some 

special phenomena such as hidden attractors, coexistence at- 

tractors, and extreme multistability were found in memcapacitor 

based chaotic oscillators [55–57] . 

In this paper we investigate a novel chaotic memfractor os- 

cillator (CMO) with charge controlled memcapacitor and flux 

controlled memristor as shown in Fig. 1 . 

R is the resistance, L is the inductances, G is the conductance 

r is the internal resistance of the voltage source and C is the 

capacitance. C m 

is the memcapacitor [49,50] and M is the flux 

controlled memristor [9–16] . The current flowing through the 

circuit are i G , i R , i C m , i L . The relationship between the voltage 

v C m (t) and the charge q C m (t) of the memcapacitor is defined as, 

v Cm 

(t) = (α + βσCm 

) q Cm 

( t ) (1) 

where, dσ
dt 

= q C m (t) .Applying Kirchhoff’s Law to the circuit shown 

in Fig. 1 , we derive the five state equations of the circuit as, 

dσ

dt 
= q C m ( t ) 

d q M 

dt 
= i L 

d q Cm 

dt 
= 

v C m 
r 

+ 

1 

R 

( v c − v C m ) 

d i L 
dt 

= 

1 

L 
( V C − M i L ) 

d v c 
dt 

= 

1 

c 

(
−i L + 

1 

R 

( v C m − v c ) 
)

(2) 

Using x = σ, y = q M 

, z = q C m , u = i L , v = v c and e = 

1 
L , f = 

1 
C , g = 

1 
R , h = 

1 
r , and with the memristor flux elements as a = 0 . 01 , b = 

0 . 01 , memcapacitor c = 0 . 7 , d = −0 . 8 and L = 0 . 136 H, C = 58 . 82 F , 

R = 0 . 2�, G = 2 . 1 , we arrive at the fifth order dimensionless 

mathematical model of the memfractor oscillator system as 

˙ x = z 

˙ y = u 

˙ z = a 1 z + a 2 xz + a 3 v 
˙ u = a 4 v + a 5 u (1 − y ) 

˙ v = a 6 u + a 7 xz + a 8 z + a 9 v (3) 

with a 1 = −1 . 89 ; a 2 = −2 . 16 ; a 3 = 4 . 8 ; a 4 = 7 . 35 ; a 5 = −0 . 0735 ; a 6 
= −0 . 17 ; a 7 = 0 . 6528 ; a 8 = 0 . 571 ; a 9 = −0 . 816 . Fig. 2 shows the 2D 

phase portraits of the CMO system for the initial conditions [0, 0, 

0, 0, 0.01]. 

3. Dynamic analysis of chaotic memfractor oscillator (CMO) 

The dynamic properties of the CMO system such as dissipa- 

tivity, equilibrium points, eigen values, Lyapunov exponents and 

Kaplan–Yorke dimension are derived and discussed in this section. 

3.1. Equilibrium points 

By equating ˙ X = 0 , the CMO system ( 3 ) shows only one equilib- 

rium point at origin ( E 1 ). The Jacobian matrix of the CMO system 

( 3 ) is 

J(X ) = 

⎡ 

⎢ ⎢ ⎣ 

0 0 1 0 0 

0 0 0 1 0 

a 2 z 0 a 1 + a 2 x 0 a 3 
0 −a 5 u 0 a 5 − a 5 y a 4 

a 7 z 0 a 8 + a 7 x a 6 a 9 

⎤ 

⎥ ⎥ ⎦ 

(4) 

The characteristic equation of the system is derived as, 

λ5 + (−a 1 − a 5 − a 9 ) λ
4 + 

(
a 1 a 5 + a 1 a 9 − a 4 a 6 
−a 3 a 8 + a 5 a 9 

)
λ3 

+ 

(
a 1 a 4 a 6 − a 1 a 5 a 9 
+ a 3 a 5 a 8 

)
λ2 (5) 

and at equilibrium E 1 the characteristic equation is 

λ5 + 2 . 7795 λ4 + 0 . 248871 λ3 + 2 . 27339028 λ2 (6) 

and the corresponding Eigen values are 

λ1 = −2 . 9555 , λ2 , 3 = 0 . 0880 ± 0 . 8726 i, λ4 , 5 = 0 (7) 

and λ2, 3 is the saddle focus. As per Routh–Hurwitz criterion, all 

the principal minors need to be positive for the CMO system to be 

stable. The principal minors are, 

�1 = δ1 > 0 , �2 = 

∣∣∣∣δ1 δ0 

δ3 δ2 

∣∣∣∣ > 0 , �3 = > 

∣∣∣∣∣
δ1 δ0 0 

δ3 δ2 δ1 

0 0 δ3 

∣∣∣∣∣ > 0 (8) 

�4 = 

∣∣∣∣∣∣∣
δ1 δ0 0 0 

δ3 δ2 δ1 δ0 

0 δ4 δ3 δ2 

0 0 0 δ4 

∣∣∣∣∣∣∣
> 0 , �5 = 

∣∣∣∣∣∣∣∣∣

δ1 δ0 0 0 0 

δ3 δ2 δ1 δ0 0 

0 δ4 δ3 δ2 δ1 

0 0 δ5 δ4 δ3 

0 0 0 0 δ5 

∣∣∣∣∣∣∣∣∣
> 0 

(9) 

where δ0 = 1 , δ1 = −a 1 − a 5 − a 9 , δ2 = a 1 a 5 + a 1 a 9 − a 4 a 6 − a 3 a 8 + 

a 5 a 9 , δ3 = a 1 a 4 a 6 − a 1 a 5 a 9 + a 3 a 5 a 8 δ4 = 0 , δ5 = 0 . 
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