
Micro and macro workflow variability design techniques of component

Chul Jin Kim a, Hyun Sook Chung b, Eun Sook Cho c,*

a Architecture Group, Software Engineering Part, Digital Solution Center, Samsung Electronics Co., Ltd., 12th Floor,

Union Steel Building 890, Daechi4-dong, Gangnam-gu, Seoul 135-524, Republic of Korea
b Chosun University, Department of Computer Engineering, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea

c Seoil College, Dept. of Software #49-3, Myeonmok-8 Dong, Jungnang-Gu, Seoul 131-702, Republic of Korea

Received 4 June 2006; received in revised form 8 January 2007; accepted 24 January 2007
Available online 31 January 2007

Abstract

Components should provide variability in satisfying a variety of domains [C. Szyperski, Component Software: Beyond Object-Ori-
ented Programming, Addison-Wesley, 2002.], but it is not easy to develop components which can be applied to all domains. Although
components are developed by analyzing many different requirements, developing components that satisfy all requirements is difficult
since unexpected requirements occur during the utilization of components. Hence, providing the variability of components becomes
an important prerequisite for a successful component-based application development.

In this paper, we propose a variability design technique that can satisfy the business workflow requirements of many different kinds of
domains. The technique addresses a method for designing the variability of the workflow in a more detailed method and uses an object-
oriented mechanism and design patterns. One of the most important goals of this technique is to provide a practical process can be effec-
tively applied in component-based application development.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Component variability; Micro/macro workflow; Reusability

1. Introduction

Component technology is widely accepted in both acade-
mia and industry. Since object-oriented technology did not
improve software development progressively [2], component
technology came to its rescue. One of the main reasons for
this was that objects have limited coverage in a typical devel-
opment process. Components significantly decrease the bur-
den of development because they provide workflow and are
offered as functional units composed of objects. The concept
of components regards software development as an assembly
process which can rapidly and easily satisfy the requirements
of different domains [3]. Components provide diversity to
fulfill various domain requirements using component
interfaces [4]. However, it is not easy to design variability
to provide diversity. Furthermore, procedural techniques
for variability design have not been exhaustively studied.

Accordingly, we propose a variability design technique that
can accommodate a variety of domain requirements.

In this paper, we propose process for designing the
workflow variability of a component. The design tech-
niques for workflow variability consist of techniques for
designing variable message flows between classes within
a component and between components in the complex
component. We propose the mediator technique of
design pattern for variable message flows within a com-
ponent and the connector technique, which plays the role
of coordinator, for variable message flows in the complex
component.

The paper is organized as follows: Chapter 2 introduces
how to design variability in component based development
(CBD) methodology. In chapter 3, as the core of this
paper, we propose the design technique for workflow vari-
ability. Chapter 4 assesses the practicality of our techniques
through case studies. Chapter 5, conclusion, summarizes
the proposed variability design techniques and describes
the underlying goal of this paper.

0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.01.001

* Corresponding author. Tel.: +822 490 7562; fax: +822 490 7398.
E-mail address: escho@seoil.ac.kr (E.S. Cho).

www.elsevier.com/locate/infsof

Available online at www.sciencedirect.com

Information and Software Technology 50 (2008) 259–279

mailto:escho@seoil.ac.kr


1.1. Variability

Variability is the difference between members of a prod-
uct family [5] such as the difference between components,
and the difference between component frameworks. The
target of variability may be the classes of product families
and their operations [6,7]. In this paper, the classes of prod-
uct families are operations of a component interface, oper-
ations of the classes in a component, and components
within a component framework. Types of variability
include attributes, behaviors, and workflows.

1.1.1. Attribute variability

Attribute variability is the difference between attributes
that have the same role among members of a product fam-
ily. Elements of the attribute variability are the same attri-
butes existing in the different classes of the same product
family such as attributes in a component interface and
attributes of classes within the same component.

1.1.2. Behavior variability

Behavior variability is the logic difference between behav-
iors that process the same function among members of the
same product family. Elements of the behavior variability
are operations among classes in the same product family
[8]. In this paper, they are operations of a component inter-
face and operations of classes within the same component.

1.1.3. Workflow variability

Workflow variability is the difference between message
flows that process the same function among members of the
same product family. Elements of the workflow variability
are message flows of the operations among classes in the same
product family. In this paper, they are message flows of a
component interface within the same component framework
or message flows of the class operation within the component.

1.2. Variability realizations

Variability can be realized using the following
techniques.

1.2.1. Parameterization

Parameterization provides the configuration of parame-
ters for customizing the behaviors of components [9]. The
variability of components can be designed with parameters
that can customize the variation points of components. If
the variability technique provides the variety of selections
through parameters, the reusable range of components will
be extended. However, the disadvantage of this method is
the increasing size of the components as the variation
points are extended.

1.2.2. Inheritance

Inheritance is a technique primarily used in object-ori-
ented frameworks. The hot spots of object-oriented frame-
works can be customized to inherit from a variable class

[10]. The variability design using inheritance defines an
abstract class for variation points and also defines the
sub-classes corresponding to the variants.

1.2.3. Plug-In

Plug-In is a technique that can plug components into a
component framework to customize the behavior [11]. A
component framework resembles object-oriented frame-
works, but object-oriented frameworks rely on inheritance
while component frameworks rely on the interfaces
between plug-ins and a component framework [12].

1.2.4. Connector

Using connectors is a technique to design the interac-
tions among components that mediate the communication
and coordination tasks through different forms of interac-
tions such as pipes, procedure calls, and event broadcast.
Connectors have interfaces that define the roles of compo-
nents participating in the interactions between compo-
nents. They have roles such as the caller and callee roles
of an RPC connector, the reading and writing roles of a
pipe, and the sender and receiver roles of a message passing
connector. Thus, connectors to design the interactions
between components can provide a technique for designing
variability in a component framework [13].

2. Related work

2.1. KobrA method

The KobrA method was developed as part of a project
funded by the German Federal Ministry of Education
and Research (BMBF) known as the Komponentenbasierte

Anwendungsentwicklung or KobrA project [14,15].
Variabilities are characteristics that may vary from

application to application. In general, all variabilities can
be described in terms of alternatives. At a coarse-grained
level, one artifact can be seen as an alternative to another
artifact. Then during application engineering, the artifact
that best matches the context of the system under develop-
ment is selected. Although simple in theory, providing an
effective representation of the variabilities in a product
family is not only critical but also problematic factors in
the success of a product line engineering project.

While KobrA method addressed the variability extrac-
tion, the variability design techniques did not address.
The process for variability extraction requires the detail
guidance. The notation for variability in KobrA proposes
to use the stereotype ‘‘ÆÆvariantææ’’ in models that include
the variability. This notation is insufficient to express a
variety of variability design techniques.

2.2. FAST

FAST (family-oriented abstraction, specification, and
translation) has been introduced to AT&T by David
Weiss and further developed at Lucent Technologies Bell

260 C.J. Kim et al. / Information and Software Technology 50 (2008) 259–279



Download	English	Version:

https://daneshyari.com/en/article/549958

Download	Persian	Version:

https://daneshyari.com/article/549958

Daneshyari.com

https://daneshyari.com/en/article/549958
https://daneshyari.com/article/549958
https://daneshyari.com/

