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a b s t r a c t 

In the context of chaotic dynamical systems with exponential divergence of nearby trajectories in phase 

space, hyperchaos is defined as a state where there is divergence or stretching in at least two directions 

during the evolution of the system. Hence the detection and characterization of a hyperchaotic attractor 

is usually done using the spectrum of Lyapunov Exponents (LEs) that measure this rate of divergence 

along each direction. Though hyperchaos arise in different dynamical situations and find several practical 

applications, a proper understanding of the geometric structure of a hyperchaotic attractor still remains 

an unsolved problem. In this paper, we present strong numerical evidence to suggest that the geomet- 

ric structure of a hyperchaotic attractor can be characterized using a multifractal spectrum with two 

superimposed components. In other words, apart from developing an extra positive LE, there is also a 

structural change as a chaotic attractor makes a transition to the hyperchaotic phase and the attractor 

changes from a simple multifractal to a dual multifractal, equivalent to two inter-mingled multifractals. 

We argue that a cross-over behavior in the scaling region for computing the correlation dimension is a 

manifestation of such a structure. In order to support this claim, we present an illustrative example of a 

synthetically generated set of points in the unit interval (a Cantor set with a variable iteration scheme) 

displaying dual multifractal spectrum. Our results are also used to develop a general scheme to generate 

both hyperchaotic as well as high dimensional chaotic attractors by coupling two low dimensional chaotic 

attractors and tuning a time scale parameter. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

A dynamical system is considered to be chaotic if it shows the 

property of sensitive dependence on initial conditions. For such 

systems, two nearby trajectories diverge exponentially in time dur- 

ing the evolution of the system, indicating that one of the LEs is 

positive. Hyperchaos is formally defined as a state where there is 

divergence in at least two directions as the system evolves. Hy- 

perchaotic attractors are thus characterized by at least two posi- 

tive LEs and are considered to be much more complex in terms of 

topological structure and dynamics compared to low dimensional 

chaotic attractors. In the last two decades, hyperchaotic systems 

have attracted increasing attention from various scientific and en- 

gineering communities due to a large number of practical applica- 

tions. These include secure communication and cryptography [1,2] , 

synchronization studies using electro-optic devices [3,4] and as a 
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model for chemical reaction chains [5] . In all these applications, 

the complexity of the underlying attractor has a major role to play. 

Though the concept of hyperchaos was introduced many years 

ago [6] , a systematic understanding of the topological and fractal 

structure of the attractors generated from the hyperchaotic sys- 

tems is lacking till date. Studies in this direction have been very 

few except a series of papers on a system of unidirectionally cou- 

pled oscillators [7–9] in which the authors have discussed many 

aspects of the structure and transition to hyperchaos in the model, 

including dual scaling regions in the hyperchaotic phase. 

Hyperchaotic attractors generated by continuous systems are, 

in general, higher dimensional with the fractal dimension D 0 > 3 

and trajectories diverging in at least two directions as the system 

evolves in time. Hence the detection of hyperchaos is generally 

done using the LEs with the transition to hyperchaos marked by 

the crossing of the second largest LE above zero. One of our aims 

in this paper is to try and get a more quantitative information re- 

garding the structure of the hyperchaotic attractor in terms of the 

spectra of dimensions and use this information to detect the tran- 

sition to hyperchaos. 
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Recently, we have done a detailed dimensional analysis 

[10,11] of several standard hyperchaotic models and have estab- 

lished some results which are common to all these systems. We 

have applied a modified box counting scheme and have obtained 

an improved scaling region for computing the fractal dimension of 

the system. Also, we have shown that the topological structure of 

the underlying attractor changes suddenly as the system makes a 

transition from chaos to hyperchaos and there is a cross-over be- 

havior in the scaling of the correlation dimension D 2 resulting in 

two different scaling regions in the hyperchaotic phase. Here we 

investigate this cross-over behavior in more detail numerically and 

show that we can derive the whole spectrum of D q values corre- 

sponding to the two different scaling regions. We consider this re- 

sult as a consequence of the fact that the geometric structure of 

a hyperchaotic attractor is equivalent to that of two inter-mingled 

multifractals and the cross-over property is a manifestation of this 

structure. In other words, the overall fractal structure of a hy- 

perchaotic attractor can be characterized by two superposed f ( α) 

spectrums. 

It should be noted that the multiscales exhibited by multifrac- 

tals have recently become an interesting area of research and have 

been discussed in various contexts. For example, the importance of 

multiscale multifractal analysis (MMA) has been demonstrated in 

the study of human heart rate variability time series [12] , where 

the multifractal properties of the measured signal depends on the 

time scale of fluctuations or the frequency band. Also, multiscale 

multifractal intermittent turbulence in space plasmas has been in- 

vestigated in the time series of velocities of solar wind plasma [13] . 

In order to convince the reader that a dual multifractal structure 

can be realized in practice, we generate a Cantor set using variable 

iteration scheme which displays dual slopes in the scaling region. 

Finally, the specific information regarding the structure of the hy- 

perchaotic attractor provides us the possibility of generating hyper- 

chaos by coupling two chaotic attractors, a result already shown in 

the literature [14,15] . Here we present a general scheme for this 

to get both hyperchaos and high dimensional chaos by varying a 

control parameter. 

Our paper is organized as follows: In the next section, we 

present a brief summary of the standard multifractal approach for 

a point set. In Section 3 , we discuss the details of numerical com- 

putations of the multifractal spectrum to show how the structure 

of a hyperchaotic attractor varies from that of an ordinary chaotic 

attractor. In order to validate our arguments regarding the struc- 

ture of the hyperchaotic attractor, we present an example of a sys- 

tem having analogous structure in Section 4 which is a syntheti- 

cally generated Cantor set using a specific iterative scheme. The 

details regarding the generation of hyperchaos based on our nu- 

merical results are discussed in Section 5 . The paper is concluded 

in Section 6 . 

2. Mathematical preliminaries 

It is well known that, unlike ideal fractals, real world systems 

and limited point sets exhibit self similarity only over a finite range 

of scales [16] . Thus in the present case, statistical self similarity 

and hence the multifractal behavior changes between two finite 

range of scales. Multifractality is commonly related to a probabil- 

ity measure that can have different fractal dimensions on different 

parts of the support of this measure. Many authors have discussed 

the standard multifractal approach in detail [17–20] and we briefly 

summarise the main results below for a point set (such as, an at- 

tractor generated by a chaotic system). 

Let the attractor be partitioned into M dimensional cubes of 

side r , with N ( r ) being the number of cubes required to cover 

the attractor. If p i ( r ) is the probability that the trajectory passes 

through the i th cube, then p i (r) = N i /N p , where N i is the number 

of points in the i th cube and N p the total number of points on the 

attractor. We now assume that p i ( r ) satisfies a scaling relation 

p i (r) ∝ r αi (1) 

where αi is the scaling index for the i th cube. We now ask how 

many cubes have the same scaling index αi or have scaling index 

within α and α + dα (if α is assumed to vary continuously). Let 

this number, say g ( α) d α, scales with r as 

g(α) ∝ r − f (α) (2) 

where f ( α) is a characteristic exponent. Obviously, f ( α) behaves as 

a dimension and can be interpreted as the fractal dimension for 

the set of points with scaling index α. This also implies that the 

attractor can be characterized by a spectrum of dimensions nor- 

mally denoted by D q (where q can, in principle, vary from −∞ to 

∞ ) [21] , that can be related to f ( α) through a Legendre transfor- 

mation [22] . The plot of f ( α) as a function of α gives a one hump 

curve with maximum corresponding to D 0 , the simple box count- 

ing dimension of the attractor. 

Note that, in the above arguement, the scaling exponent α mea- 

sures how fast the number of points within a box decreases as r 

is reduced. It therefore measures the strength of a singularity for 

r → 0. For a realistic attractor, with limited number of data points, 

the limit r → 0 is not accessible and hence one chooses a suit- 

able scaling region for r to compute α and f ( α). This is where a 

hyperchaotic attractor becomes different from an ordinary chaotic 

attractor, as per our numerical results. We find that, to character- 

ize the multifractal structure of a hyperchaotic attractor, two seper- 

ate scaling regions are to be considered indicative of the presence 

of two underlying multifractals. The detailed numerical results are 

presented in the next section. 

3. Hyperchaotic attractor as a dual multifractal 

Before going into the computation of the multifractal spectrum, 

we discuss very briefly our results on D 2 obtained using the mod- 

ified box counting scheme [10,11] , where the scaling region for 

computing D 2 is fixed algorithmically. The attractor is covered us- 

ing M -dimensional cubes of size r . The probability p i that the tra- 

jectory passes through the i th cube is computed by taking an en- 

semble average of the number of points falling in the i th cube. This 

modifies the equation for computing the weighted box counting 

sum B ( r ) as: 

B (r) = 

1 

N 

2 
p 

[ 
∑ 

i 

m 

2 
i − N p ] (3) 

where N p is the total number of points on the attractor and m i is 

the number of points falling in the i th box. The correlation dimen- 

sion is then calculated as the scaling index of the variation of B ( r ) 

with r as: 

D 2 ≡ lim 

r→ 0 
log B (r) / log (r) (4) 

For the present study, we use time series from three standard 

hyperchaotic systems, namely, the Chen hyperchaotic flow [23] , the 

Mackey–Glass (M-G) time delayed system [24] and the Ikeda time 

delayed system [25] . For the hyperchaotic flow, we fix the param- 

eters as studied in detail in [10] (a = 35 , b = 4 . 9 , c = 25 , d = 5 , e = 

35 , k = 100) to generate the hyperchaotic time series. For M-G and 

Ikeda systems, we use the time delay τ as the control parameter 

with the other parameters fixed as β = 2 , γ = 1 , n = 10 for M-G 

and a = 5 , m = 20 for Ikeda respectively. We have studied the tran- 

sition to hyperchaos in these two time delayed systems in detail 

[11] and here we choose τ = 6 . 40 for M-G and τ = 0 . 56 for Ikeda 

for generating the hyperchaotic time series. 



Download English Version:

https://daneshyari.com/en/article/5499588

Download Persian Version:

https://daneshyari.com/article/5499588

Daneshyari.com

https://daneshyari.com/en/article/5499588
https://daneshyari.com/article/5499588
https://daneshyari.com

