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a b s t r a c t 

This paper studies an adaptive Fractional Order (FO) state feedback control and the synchronization of FO 

chaotic systems. In the proposed algorithm, the feedback gain follows a FO adaptive control law. Two dif- 

ferent control procedures are introduced namely full- and reduced-state feedback controllers, with single 

and vector variable feedback gains, respectively. The stability analysis is provided by means of the FO Lya- 

punov theorem both for the control and synchronization problems. Three examples are given to illustrate 

the effectiveness of the proposed scheme. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional Calculus (FC) is a branch of mathematical analysis 

and its applications that attracted considerable attention during 

the two last decades [1] . FC generalizes the concept of deriva- 

tive or integral of a function to a non-integer order [2] . The mod- 

els that comprise fractional derivatives and integrals, the so called 

fractional-order (FO) systems, are recognized to be an effective tool 

for modeling many physical processes [3] . In fact, distinct phenom- 

ena are successfully modeled in the FO perspective, such as earth- 

quakes [4] , the Rayleighs piston [5] , stock markets [6] , pendula [7] , 

muscular blood vessels [8] , and electromagnetism [9] . 

Recent results reported in the literature show that FO systems 

can behave chaotically [10] , such as in the FO hyperchaotic Lorenz 

[11] and Chen [12] , reverse butterfly-shaped chaotic [13] , chaotic 

Arneodo [14] and unified [15] , and FO complex power [16] systems. 

The nonlinear chaotic systems have special characteristics such 

as unpredictable evolutions and strong dependence on the initial 

conditions [17] . FO chaos suppression including control and syn- 

chronization became a relevant topic during the past decade due 

to their potential application in different areas [13,18–22] . Several 

control algorithms have been extensively investigated in the litera- 

ture to deal with the chaos suppression, such as the active [23–25] , 

predictive [26] , sliding-mode [27–29] , robust [30,31] and adaptive 

[16,32–37] control methods. 

∗ Corresponding author. 

E-mail address: a_alfi@shahroodut.ac.ir (A. Alfi). 

The key challenges in the control systems are the selection of 

the architecture and the parameter tuning. In the area of chaotic 

systems, a simple accessible controller is particularly significant 

both in the theoretical and practical perspectives. Among the pro- 

posed algorithms, the state feedback controller is as a promising 

technique to achieve these goals. The main design topic in the state 

feedback control is the selection of the feedback gains that affect 

directly the stability of the closed-loop system. 

There are two strategies, such as the adaptive and non-adaptive 

algorithms, to implement the gain of state feedback controller by 

using integer or FO Lyapunov functions. Furthermore, the adaption 

law of the feedback gain can be integer or fractional. In [16] , a 

switching controller with FO adaption law was introduced to sta- 

bilize FO systems based on the FO stability theory (i.e. using FO 

Lyapunov functions). In [34] , an adaptive controller with integer 

adaption law for synchronization of a class of three-dimensional 

FO chaotic systems was presented using an integer Lyapunov func- 

tion. In [35] , a single state feedback controller with integer adap- 

tion law was proposed to stabilize a three-dimensional FO chaotic 

system using integer Lyapunov stability theory. 

With these ideas in mind, the suppression of chaos in FO sys- 

tems is investigated here considering, (1) a systematic technique 

for designing adaptive state feedback control of FO chaotic sys- 

tems with FO law and FO Lyapunov stability functions, (2) two 

scenarios with full and reduced-state feedback controllers both 

in a single and vector variable feedback gains, (3) a strategy for 

handling the problem both in the stability analysis and design 

phases. In this perspective, the paper is organized as follows. 

Section 2 recalls some fundamental concepts and results of the FC 
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theory. Sections 3 and 4 develop the main concepts for FO adaptive 

control and synchronization of FO chaotic systems, respectively. 

Section 5 analyzes several simulations that demonstrate the effec- 

tiveness of tproposed control technique. Finally, Section 6 discusses 

the results and outlines the conclusions. 

2. Fundamental concepts and results 

In this section, the fundamental definitions of fractional opera- 

tors are recalled. Some properties and lemma related to the stabil- 

ity analysis of FO systems are given below. 

Definition 1 [36] . The Caputo fractional derivative of order α of a 

function x (t) ∈ C n +1 ([ t 0 , + ∞ ) , R ) is defined as: 

D 

αx (t) = 

1 

�(n − α) 

∫ t 

t 0 

x (n ) ( τ ) 

( t − τ ) α−n +1 
dτ, (1) 

where t > t 0 , n − 1 < α < n ∈ Z + and �( · ) is the gamma function, 

�(α) = 

∫ ∞ 

0 t α−1 e −t dt . 

In particular, if 0 < α < 1, then 

D 

αx (t) = 

1 

�(1 − α) 

∫ t 

t 0 

( t − τ ) −αx (1) ( τ ) dτ, (2) 

Definition 2 [36] . The Riemann–Liouville fractional integral of or- 

der α of a continuous function x (t) ∈ C n +1 ([ t 0 , + ∞ ) , R ) is defined 

as 

I αx (t) = 

1 

�(α) 

∫ t 

t 0 

(t − τ ) α−1 x (τ ) dτ, (3) 

where t ≥ t 0 and α > 0. 

Definition 3 [36] . Let f ( t ) be a continuously differentiable function 

defined on x ( t ) ∈ C n [ a , b ], then 

I αD 

αx (t) = x (t) −
n −1 ∑ 

k =1 

x (k ) (a ) 

k ! 
(t − a ) k . (4) 

In particular, if 0 < α < 1 and x ( t ) ∈ C 1 [ a , b ], then 

I αD 

αx (t) = x (t) − x (a ) . (5) 

Definition 4 [38] . Let X ( t ) ∈ R n be a continuously differentiable 

function, then 

D 

α
(

1 

2 

X 

T (t) X (t) 
)

≤ X 

T (t) D 

αX (t) , (6) 

where t ≥ t 0 and α ∈ (0, 1). 

Corollary 1. From Definitions 1 and 4 , for any continuously differen- 

tiable function x ( t ) and any constant ρ ∈ R , it can be concluded that 

we have 

D 

α( x (t) − ρ) 
2 = D 

α
(
x 2 (t) − 2 ρx (t) + ρ2 

)
, 

≤ 2 ( x (t) − ρ) D 

αx (t) , (7) 

where 0 < α < 1 and t ∈ [0, ∞ ) . 

3. Main concepts for FO adaptive control of FO chaotic system 

The success of linear state feedback relies on an appropriate 

choice of the feedback gains. In this section, we develop two dis- 

tinct procedures for determining the feedback gains for FO chaotic 

systems. 

Consider the FO chaotic system described by 

D 

αX (t) = f (X ) , (8) 

where 0 < α < 1, X = ( x 1 , x 2 , · · · , x n ) 
T ∈ R n and f (X ) = 

( f 1 (X ) , f 2 (X ) , · · · , f n (X ) ) 
T 

: R n → R n is a nonlinear vector function. 

Assume that �⊂ R n is a chaotic bounded set of Eq. (8) , which is 

globally attractive, and that X = X ∗ is an equilibrium point of the 

system (8) in �. Having in mind the controller design and its sta- 

bility analysis, we assume that ∀ X = ( x 1 , x 2 , · · · , x n ) 
T ∈ � and that 

there is a constant l = [ l 1 , · · · , l n ] > 0 such that 

| f i (X ) | ≤ l i | X | ∞ 

, i = 1 , 2 , · · · , n, (9) 

where | X | ∞ 

denotes the ∞ -norm of X , defined as | X | ∞ 

= max j 
∣∣X j ∣∣, 

j = 1 , 2 , · · · , n . This condition is easily met and is valid for the all 

well-known finite dimensional chaotic and hyper chaotic systems. 

With the above assumptions two control scenarios, namely full- 

and reduced-state feedback control, are proposed to deal with the 

problem under study and designed separately. Without loss of the 

generality, we suppose that origin is an equilibrium point of the 

system (8) . 

3.1. Full state feedback control 

In this scenario, in order to stabilize the system (8) toward its 

equilibrium point X ∗ = 0 , we first consider the FO adaptive state 

feedback controller with a single variable feedback gain 

U(t) = −k 1 (t ) X (t ) = −k 1 (t) [ x 1 (t) , x 2 (t ) , · · · , x n (t ) ] 
T 
, (10) 

under the update law 

D 

αk 1 (t) = γ
n ∑ 

j=1 

(
x j (t) − x ∗j 

)2 = γ X 

T (t ) X (t ) (11) 

is introduced, where k 1 ( t ) ≥ 0 is the feedback gain, γ is a positive 

constant and x ∗
j 

is jth row of X 

∗ vector. Using the adaptive state 

controller (10) , the overall closed-loop system is obtained as 

D 

αX (t) = f (X ) + U(t) = f (X (t)) − k 1 (t ) ( X (t ) − X 

∗) , 

= f (X (t)) − k 1 (t) X (t) . (12) 

Theorem 1. Consider the closed-loop system (12) with arbitrary 

initial values. Using the adaptive feedback controller given in 

Eq. (10) and (11) , the closed-loop system is stable and the chaotic or- 

bits ( X ( t ), k 1 ( t )) 
T converge to 

(
0 , k ∗

1 

)T 
when t → ∞ , where k ∗

1 
is a 

positive constant depending on the its initial values and γ . 

Proof. Construct the following candidate Lyapunov function 

V (t) = 

1 

2 

X 

T (t) X (t) + 

1 

2 

1 

γ
( k 1 (t) − L ) 

2 
, (13) 

where L is a sufficiently large positive constant, such that L ≥∑ n 
i =1 l i . By differentiating the Lyapunov function along the trajec- 

tories, it yields 

D 

αV (t) ≤ X 

T (t) D 

αX (t) + 

1 

γ
( k 1 (t) − L ) D 

αk 1 ( t) , 

≤ X 

T (t) ( f (X (t)) − k 1 (t) X (t) ) 

+ ( k 1 (t) − L ) X 

T (t) X (t) , 

≤ X 

T (t) f (X (t)) − LX 

T (t) X (t) , 

≤
( 

n ∑ 

i =1 

l i 

) 

X 

T (t) X (t) − LX 

T (t) X (t) ≤ 0 , (14) 

which implies that the closed-loop system is stable in the sense of 

Lyapunov. 

In the follow-up, we develop the controller design by choos- 

ing different feedback gains, which is so-called full-state feed- 

back controller with vector variable feedback gain. Let us 

consider the system (8) with γ = [ γ1 , γ2 , · · · , γn ] and K(t) = 

[ k 1 (t) , k 2 (t ) , · · · , k n (t ) ] under the feedback controller 
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