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a b s t r a c t 

In this paper, the dynamical behaviors of a friction–induced oscillator with switching control law are 

studied through the flow switching theory of discontinuous dynamical systems. The physical model con- 

sists of a mass on the conveyor belt and a spring-damping system with switching control law. Based 

on the switching control law and the friction between the oscillator and the conveyor belt, multiple do- 

mains and discontinuous boundaries are defined. The G–functions are introduced to illustrate the motion 

switching mechanism and the analytical conditions of the passable motion, stick motion, sliding motion 

and grazing motion are presented for motion switchability. The switching sets and mapping structures 

are adopted to describe the complex motions in this discontinuous system. The numerical simulations 

are also carried out from the analytical conditions and mapping structures in order to better understand 

the motion switching complexity of this oscillator. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Friction and transversal phenomena exist widely in the produc- 

tion and life. In engineering, the frictional force that exists be- 

tween the oscillator and the belt, and the setting of the transverse 

control system are the important factors leading to the disconti- 

nuity of the dynamic systems. The research on the friction and 

transversal phenomena has never stopped. Hartog [1] investigated 

the periodic motion in the system of forced vibrations and vis- 

cous damping in 1930. In 1960, Levitan [2] used the Fourier se- 

ries to investigate the friction oscillation model with the periodi- 

cally driven base, and discussed the stability of the periodic mo- 

tion. In 1979, Hundal [3] studied the response of a single degree 

of freedom spring-mass system with viscous and Coulomb friction 

through the closed form analytical solutions. In 1986, Shaw [4] in- 

vestigated the non–stick periodic motion with dry–friction, and 

discussed the stability of the motion using Poincare mappings. In 

1994, Feeny and Moon [5] experimentally and numerically studied 

the chaotic dynamics of a harmonically forced spring-mass system 

with dry friction. In 1999, Virgin and Begley [6] analyzed the graz- 

ing bifurcations and basins of attraction in an impact-friction oscil- 

lator. In 20 0 0, Dankowicz and Nordmark [7] mainly discussed bi- 

furcations associated with the appearance of stick-slip oscillations 

based on methods of dynamical system analysis. In 20 0 0, Leine 
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et al. [8] used the Fillipov theory to investigate the bifurcations in 

nonlinear discontinuous systems. In 2001, Ko et al. [9] studied the 

dynamics of a friction–induced vibration with or without external 

disturbance. In 2003, Kim and Perkins [10] improved the superior 

convergence rates and superior modes of convergence by general- 

izing the traditional harmonic balance methods, and used an ex- 

ample of a classical single degree-of-freedom model to illustrate 

this improvement. In 2005, Luo [11–13] developed a local singular- 

ity and transversally theory of a flow on the separation boundary 

from one domain to its adjacent domain, and introduced the real 

flows and imaginary flows. And he used such a theory to investi- 

gate the mapping dynamics and switching conditions of periodic 

motions for a piecewise linear system under a periodic excitation. 

In 2006, Luo and Gegg [14] studied the dynamic mechanism of 

stick and non-stick motion of dry friction vibrators, and analyti- 

cally predicted the periodic motion with stick and non-stick based 

on mapping structures. In 2007, the switching dynamics of flow 

from one domain into another in the periodically driven discontin- 

uous system were presented in Luo and Rapp [15] , and the slid- 

ing and grazing conditions on the separation boundary were given, 

and the periodic motions were analytically predicted through dif- 

ferent mapping structures. In 2008, Luo [16] introduced the G–

functions for discontinuous dynamical systems to investigate the 

singularity in discontinuous dynamical systems, and discussed the 

switchability of a flow from a domain to an adjacent one using 

such G–functions. In 2011 and 2012, Luo [17,18] systematically pre- 

sented the flow switching theory of discontinuous dynamical sys- 

tems. Based on this theory, Chen and Fan [19] investigated the 
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analytical results of complex motions for a double friction–

oscillator in 2016; and Fan et al. [20] studied a friction–induced os- 

cillator with two degree of freedom on a speed–varying traveling 

belt in 2017. In 2015 and 2017, Zhang and Fu [21–23] studied the 

periodic motions, stick motions, grazing flows in an inclined im- 

pact oscillator and the flow switchability of motions in a horizontal 

impact pair with dry friction by using the flow switching theory in 

discontinuous dynamical systems. In 2016, Li and Wu [24] studied 

the stability of nonlinear differential systems with state–dependent 

delayed impulses. Li and Song [25] investigated the stabilization of 

delay systems of delay-dependent impulsive control in 2017. In the 

same year, Zhang and Li [26] discussed the input–to–state stability 

of non–linear systems with distributed–delayed impulses. 

In 2005, the motions of a friction–induced oscillator with pe- 

riodic excitation on the constant speed belt was analyzed via the 

theory of flow switchability for discontinuous dynamical systems 

in Luo and Gegg [27] , and the corresponding numerical simulations 

were given as well. In 2010, Luo and Rapp [28] studied the sliding 

and transversal motions on an incline boundary in a periodically 

driven discontinuous system. The main characteristic of this sys- 

tem was the straight line boundary that was considered as a con- 

trol law to switch in the phase space. The normal vector field to 

the separation boundary was given to develop the corresponding 

transversal conditions. The periodic motions and the corresponding 

local stability and bifurcation analysis were carried out through the 

mapping structures. As a matter of fact, the models with friction 

and switching control law exist extensively in physics, aerospace 

engineering, and mechanical engineering. For example, the semi 

active variable stiffness, damping and external excitation control 

systems are useful in intelligent braking system and seismic con- 

trol. 

In this paper, the flow switchability theory of discontinuous dy- 

namical systems is used to study the complex dynamics of the 

friction–induced oscillator with switching control law. When the 

velocity and displacement of the oscillator satisfy the appropriate 

conditions, that is, the switching control law, the spring stiffness, 

damping coefficient and external excitation of the oscillator will 

change. Based on the discontinuities caused by the switching con- 

trol law and the friction between the oscillator and the conveyor 

belt, multiple domains and discontinuous boundaries are defined 

in phase plane. The analytical conditions of passable motion, stick 

motion, sliding motion and grazing motion are presented through 

the G–functions. According to the mapping structures and analyt- 

ical conditions, numerical simulations are given to better under- 

stand the complex motions of the friction–induced oscillator with 

switching control law. 

2. Preliminaries 

For convenience, the concepts of G–functions and some lemmas 

are given in the following (see [17,18] ). 

Definition 1. Consider a dynamic system consisting of N sub- 

dynamic systems in a universal domain �⊂ R n . The universal do- 

main is divided into N accessible sub-domains �α( α ∈ I ) and the 

union of inaccessible domain �0 . The union of all the accessible 

sub-domains is ∪ α ∈ I �α and � = ∪ α∈ I �α
⋃ 

�0 is the universal do- 

main. On the αth open sub-domain �α , there is a C r α -continuous 

system ( r α ≥ 1) in a form of 

˙ x 

(α) ≡ F (α) (x 

(α) , t, p α) ∈ R 

n , x 

(α) = (x (α) 
1 

, x (α) 
2 

, . . . , x (α) 
n ) T ∈ �α, 

(1) 

where time is t and ˙ x (α) = 

dx (α) 

dt 
. In an accessible sub-domain 

�α , the vector field F ( α) ( x ( α) , t , p α) with parameter vectors p α = 

(p (1) 
α , p (2) 

α , . . . , p (l) 
α ) T ∈ R l is C r α – continuous ( r α ≥ 1) in x ( α) ∈ �α

and for all time t ; and the continuous flow in (1) x (α) 
t = 

�(α) (t 0 , x 
(α) 
0 

, p α, t) with an initial condition (t 0 , x 
(α) 
0 

) is C r α+1 –

continuous for time t . 

The flow on the boundary ∂�αβ of two adjacent domains can 

be determined by 

˙ x 

(0) ≡ F (0) (x 

(0) , t) with ϕ i j (x 

(0) , t, λ) = 0 , (2) 

where 

x 

(0) = (x (0) 
1 

, x (0) 
2 

, . . . , x (0) 
n ) T . 

With specific initial conditions, one always obtains different flows 

on ϕ i j (x (0) , t, λ) = 0 . 

Consider a dynamic system (1) in domain �α( α ∈ { i, j }) 

which has a flow x (α) 
t = �(α) (t 0 , x 

(α) 
0 

, p α, t) with an initial con- 

dition (t 0 , x 
(α) 
0 

) and on the boundary ∂�i j = { x | ϕ i j (x , t, λ) = 

0 , ϕ i j is C r − continuous (r ≥ 1) } ⊂ R n −1 , there is an enough 

smooth flow x (0) 
t = �(0) (t 0 , x 

(0) 
0 

, λ, t) with an initial condition 

(t 0 , x 
(0) 
0 

) . For an arbitrarily small ε > 0, there are two time intervals 

[ t − ε, t) and (t, t + ε] for flow x (α) 
t (α ∈ { i, j} ) , the vector fields 

F (α) (x (α) 
t , t, p α) and F (0) (x (0) 

t , t, λ) are C r α
[ t −ε,t + ε] 

-continuous ( r α ≥ k, 

k is a positive integer) for time t with 

‖ d r α+1 x 

(α) 
t /dt r α+1 ‖ < ∞ , ‖ d r α+1 x 

(0) 
t /dt r α+1 ‖ < ∞ . 

Definition 2. The 0th–order G -functions (G 

(α) 
∂�i j 

) of the domain 

flow x (α) 
t to the boundary flow x (0) 

t on the boundary in the nor- 

mal direction of the boundary ∂�ij are defined as 

G 

(α) 
∂�i j 

(x 

(0) 
t , t ±, x 

(α) 
t ± , p α, λ) 

≡ G 

(0 ,α) 
∂�i j 

(x 

(0) 
t , t ±, x 

(α) 
t ± , p α, λ) 

= D 

x (0) 
t 

t n 

T 
∂�i j 

· (x 

(α) 
t ± − x 

(0) 
t ) + 

t n 

T 
∂�i j 

·[ F (α) (x 

(α) 
t ± , t ±, p α) − F (0) (x 

(0) 
t , t, λ)] , (3) 

where t n ∂�i j 
is the normal vector of the boundary surface ∂�ij 

and t ± = t ± 0 is to represent the quantity in the domain rather 

than on the boundary. 

Definition 3. The k th-order G -functions (G 

(k,α) 
∂�i j 

) of the domain 

flow x (α) 
t to the boundary flow x (0) 

t on the boundary in the nor- 

mal direction of ∂�ij are defined as 

G 

(k,α) 
∂�i j 

(x 

(0) 
t , t ±, x 

(α) 
t ± , p α, λ) 

= 	k +1 
s =1 C 

s 
k +1 D 

k +1 −s 

x (0) 
t 

t n 

T 
∂�i j 

·[ D 

s −1 

x (α) 
t 

F (x 

(α) 
t± , t ±, p α) − D 

s −1 

x (0) 
t 

F (0) (x 

(0) 
t , t, λ)] 

+ D 

x (0) 
t 

t n 

T 
∂�i j 

· (x 

(α) 
t ± − x 

(0) 
t ) , (4) 

where k is a positive integer. 

In above definitions, the total derivative is 

D 

x (0) 
t 

(·) ≡ ∂(·) 
∂x 

(0) 
t 

· ˙ x 

(0) 
t + 

∂(·) 
∂t 

, 

and the normal vector of the boundary surface ∂�ij at point x (0) 
t 

is given by 

t n ∂�i j 
(x 

(0) 
t , t, λ) = 
 ϕ i j (x 

(0 ) 
t , t, λ) 

= ( 
∂ϕ i j 

∂x (0) 
1 

, 
∂ϕ i j 

∂x (0) 
2 

, · · · , 
∂ϕ i j 

∂x (0) 
n 

) T 
∣∣∣
(t, x (0) 

t ) 
. 

Considering the flow x (α) 
t contacts with the boundary x m 

∈ ∂�ij at 

the time t m 

, that is x (α) 
t m ± = x m 

= x (0) 
t m 

, the 0th–order G–functions 
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