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a b s t r a c t 

Switching dynamical systems occur frequently in many areas of physics and engineering. In this paper we 

consider a piecewise linear map, that randomly switches in between more than one different functional 

forms, in any one of the compartments of the phase space. We establish that for such kind of maps 

there exists a region in the phase space consisting of a special property that, the dynamics of any orbit 

starting from any particular point, lying inside this region is not deterministic, as any two orbits may find 

different destinations despite of starting from the same initial point. In other words, even if two orbits 

start from the same initial point (belonging to the specified region in the phase space), then also they 

may not converge or diverge together, i.e., one of them may converge to a stable fixed point whereas the 

other one may diverge to infinity. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Switching dynamical systems frequently occur in the context 

of many physical, biological, engineering and control systems, sys- 

tems involving robotics etc. In general we observe mainly two 

kinds of switching among these systems—state dependent and 

time dependent switching. Piecewise smooth(PWS) maps are very 

common examples of state dependent switching dynamical sys- 

tems. An n dimensional piecewise smooth map is described by two 

different functional forms in two different compartments of the 

phase space, separated by an (n − 1) dimensional subspace called 

‘border’. The map is everywhere differentiable except at the border. 

These type of maps are used to model many systems in electrical 

and mechanical engineering, biology etc. For example, switching in 

power electronics and grazing in mechanical systems are a cou- 

ple of common phenomenon which give rise to these kind of PWS 

maps. In general, the discrete time representation of any continu- 

ous time hybrid dynamical system, is described by a PWS maps. 

These maps may either be continuous (PWS continuous maps) or 

discontinuous (PWS discontinuous maps) at the border. In the lit- 

erature we find several systems which are modelled by PWS con- 

tinuous as well as PWS discontinuous maps [1–8] . A lot of intense 

researches have been carried out to study the various dynamical 

properties of these types of systems [9–17] . 

On the other hand there are systems, involving only time de- 

pendent switching also. Iterated function systems are very com- 

mon examples of such kind of systems. It has been proved that a 

large variety of fractals are nothing but attractors of a class of it- 
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erated function systems [18,19] . Several other kinds of time depen- 

dent switching systems, arising due the evolution of the system 

dynamics in a changing environment have also been studied by 

Penrose et al. , where many dynamical properties, such as invariant 

density etc. have been investigated [20] . Besides the two types of 

switching phenomena discussed above, there may arise many situ- 

ations, where we may need both time and state dependent switch- 

ing to model a system. These types of systems are used, in order to 

tackle some specific practical situations. Such kind of systems has 

been studied already. It has been shown that an invariant attractor 

may bifurcate into a non-invariant attractor due to border-collision 

bifurcation in these type of systems [21] . 

Basin of attraction of an attractor is defined as a region of the 

phase space, with the property that, any orbit which starts inside 

this region, ultimately converges to the attractor. Moreover if an 

orbit starts from any point lying outside this basin of attraction, 

then it certainly does not converge to that attractor, it either con- 

verges to some other attractor or it simply diverges. Therefore any 

two orbits, which start from a particular point in the phase space, 

either converge or diverge together. In this paper we have shown 

that the above situation may not hold true for a type of piecewise 

smooth maps that randomly switches in between one or more dif- 

ferent functional forms. Here we consider a one dimensional piece- 

wise linear continuous map, the functional form of which switches 

in between two different functions depending upon time, in any 

one of the compartments of the phase space. Therefore the sys- 

tem contains state dependent as well as time dependent switching 

also. The time dependent switching is assumed here to be random, 

following some specific probability distribution. We have showed 

that, in case of these types of systems, there exist a region in the 
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phase space with the property that, if any two orbits start from 

a same point inside this region, then one of them may converge 

to a stable fixed point whereas the other may diverge to infinity. 

Therefore each orbit has non-zero probabilities of convergence (to 

a stable fixed point) as well as divergence (to infinity), even if they 

start from the same initial point. 

2. Mathematical formulation 

Consider the one dimensional piecewise smooth map given by 

the following 

x n +1 = 

{
λ + k 1 x n : x ≤ 0 

λ + kx n : x ≥ 0 

(1) 

Where 0 < k 1 < 1 and k > 1. Then when λ< 0 there exist two fixed 

points, one to the left of the border, say x L and the other to the 

right side of the border, say x R . Here 

x L = 

λ

1 − k 1 
; x R = 

λ

1 − k 
(2) 

We notice that x R is an unstable fixed point whereas x L is a stable 

fixed point with (−∞ , x R ) as its basin of attraction. 

Now consider that the slope of the right hand side of the piece- 

wise smooth map, i.e., k is not a constant, rather it varies depend- 

ing upon time randomly, according to a specified probability dis- 

tribution. In that case the map (1) becomes 

x n +1 = 

{
λ + k 1 x n : x ≤ 0 

λ + k (n ) x n : x ≥ 0 

(3) 

where 

k (n ) = 

{
k 2 : with probability p 1 

k 3 : with probability p 2 
(4) 

and p 1 + p 2 = 1 , i.e., at any arbitrary n -th time step we have two 

possibilities (either k (n ) = k 2 or k (n ) = k 3 ) and their probabilities 

are given as follows. 

P (k (n ) = k 2 ) = p 1 

and 

P (k (n ) = k 3 ) = p 2 

Now in map (3) if k (n ) = k 2 , then we have the stable fixed 

point x L = 

λ
1 −k 1 

, with (−∞ , x R 1 ) as its basin of attraction, where 

x R 1 = 

λ
1 −k 2 

is the unstable fixed point of the map. Similarly if 

k (n ) = k 3 , then we have the stable fixed point x L = 

λ
1 −k 1 

, with 

(−∞ , x R 2 ) as its basin of attraction, where x R 2 = 

λ
1 −k 3 

is the un- 

stable fixed point of the map. 

Therefore at any particular instant the stable fixed point of the 

map (3) remains unaltered, but its basin of attraction changes de- 

pending upon the value of k ( n ). If we denote the basin of attraction 

of x L by B then we have the following two probabilities, 

P (B = (−∞ , x R 1 )) = p 1 

and 

P (B = (−∞ , x R 2 )) = p 2 

Therefore in this case we have a piecewise linear map, the func- 

tional form of which switches in between more than one functions 

depending upon time randomly, according to some specified prob- 

ability distribution. We now determine the basin of attraction for 

the stable fixed point x L of the map (3) . We have x R 1 = 

λ
1 −k 2 

and 

x R 2 = 

λ
1 −k 3 

as two possible unstable fixed point at any instant of 

time. Then either x R 1 < x R 2 or x R 1 > x R 2 (we do not consider the 

possibility that x R 1 = x R 2 as k 2 � = k 3 ). Without loss of generality let 

us assume that x R 1 < x R 2 . Then first consider the region (−∞ , x R 1 ) 

of the phase space. Since it is the common region of the two possi- 

ble basin of attractions, any orbit of the map (3) starting inside this 

region necessarily converges to the stable fixed point x L . Whereas 

it is obvious that any orbit starting outside the interval (−∞ , x R 2 ) 

diverges to infinity. Now the question is—what can we say about 

the interval (x R 1 , x R 2 ) of the phase space. What will be the future 

dynamics of any orbit starting inside this region? Will it converge 

to the stable fixed point or diverge to infinity? Our main aim will 

now be to investigate these questions. 

Before we proceed further, let us discuss a couple of issues. 

If | k ( n )| < 1, then there exist contracting linear maps on both the 

compartments and as long as λ< 0, both x R 1 and x R 2 do not exist, 

whereas x L still remains as a fixed point of (3) . Therefore starting 

from any initial point, an orbit of (3) converges to the fixed point 

x L . Again if k (n ) < −1 , then as long as λ< 0, x L exist as a fixed 

point of (3) on the left hand side compartment, whereas both x R 1 
and x R 2 do not exist. In that case, due to the presence of expanding 

linear maps with negative slope on the right hand side compart- 

ment, all but finite number of iterates of any orbit lie to the left 

hand side compartment of the phase space and hence the result- 

ing orbit converges to the fixed point x L . Therefore in both cases x L 
remains as the stable fixed point of (3) and the whole phase space 

serves as its basin of attraction. 

3. Determination of basin of attraction 

First we notice that there can be three possibilities regarding an 

orbit of the map (3) , which starts inside the interval (x R 1 , x R 2 ) . 

• After a finite number of iterations the orbit enters the region 

(−∞ , x R 1 ) . In that case the orbit ultimately converges to the 

stable fixed point x L . 

• After a finite number of iterations the orbit enters the region 

(x R 2 , ∞ ) . In that case the orbit diverges to infinity. 

• All the iterates remain confined in the region (x R 1 , x R 2 ) . 

Let the probabilities of the first and second possibilities are P x 0 
and P ∗x 0 respectively. We show that the third possibility is redun- 

dant, i.e. the probability of the third possibility is zero and there- 

fore 

P x 0 + P ∗x 0 = 1 

In map (3) , let us denote the right hand side expanding lin- 

ear map corresponding to k = k 2 and k = k 3 by f k 2 and f k 3 respec- 

tively. Suppose we start from any initial point x 0 ∈ (x R 1 , x R 2 ) and 

for next n number of iterates it remains confined in the same in- 

terval (x R 1 , x R 2 ) i.e. x n ∈ (x R 1 , x R 2 ) , for i = 0 , 1 , 2 , · · · , n . Then x n = 

f n · · · f 2 f 1 (x 0 ) , i.e. we apply the sequence of functions ( f 1 , f 2 , ���, 

f n ) to reach x n from x 0 , where each f i is either f k 2 or f k 3 as there 

can be two possibilities at every step that either f k 2 or f k 3 is ap- 

plied to the previous iterate, depending upon the relative positions 

of the iterates and the border. So there exist 2 n number of such 

possible sequences ( f 1 , f 2 , ���, f n ). Denote these 2 n number of se- 

quences as F i , i = 1 , 2 , · · · , 2 n , i.e., F i ≡ ( f i 1 = f 1 , f i 2 = f 2 , · · · , f i n = 

f n ) where either f i k = f k 2 or f i k = f k 3 for k = 1 , 2 , · · · , n . 

Then we have 

P (x n ∈ (x R 1 , x R 2 )) = 

2 n ∑ 

i =1 

P (x n ∈ (x R 1 , x R 2 ) | F i ) P (F i ) (5) 

Where P (x n ∈ (x R 1 , x R 2 ) | F i ) is the conditional probability of the fact 

that x n ∈ (x R 1 , x R 2 ) subject to the condition that F i is applied on x 0 . 

Now we note that 

P (F i ) = P ( f i 1 = f 1 , f i 2 = f 2 , · · · , f i n = f n ) 

= P ( f i 1 = f 1 ) P ( f i 2 = f 2 ) · · · P ( f i n = f n ) 
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