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a b s t r a c t 

A class of generic spatially extended fractional reaction-diffusion systems that modelled predator-prey 

interactions is considered. The first order time derivative is replaced with the Caputo fractional derivative 

of order γ ∈ (0, 1). The local analysis where the equilibrium points and their stability behaviours are 

determined is based on the adoption of qualitative theory for dynamical systems ordinary differential 

equations. We derived conditions for Hopf bifurcation analytically. Most significantly, existence conditions 

for a unique stable limit cycle in the phase plane are determined analytically. Our analytical findings are 

in agreement with the numerical results presented in one and two dimensions. The system of fractional 

nonlinear reaction-diffusion equations has demonstrated the usefulness of understanding the dynamics 

of nonlinear phenomena. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the years, the system of fractional reaction-diffusion equa- 

tions have gained a lot of scholars attention in the to study non- 

linear phenomena that occur in various application areas of sci- 

ence, engineering and technology [1–5,7,15,25,26] . Of particular 

interest the formation of nonlinear patterns in high dimensions 

[6,11,12,33,36] . The evolution of pattern formation can best be de- 

scribed by the fractional order system due to the fact that the 

fractional-order derivatives involved take into account the whole 

history of the equation is known as the memory effect [9,14,37] . 

A fractional reaction-diffusion system is considered as a gener- 

alisation of the classical reaction-diffusion system with the deriva- 

tive of arbitrary (real) order. The fractional reaction-diffusion sys- 

tem is obtained by replacing the first-order time derivative order 

by γ defined on 0 < γ < 1, or the second-order spatial derivative 

power by β , on the interval 1 < β < 2. We can also replace both to 

E-mail addresses: mkowolax@yahoo.com , kmowolabi@futa.edu.ng 

obtain time-space fractional reaction-diffusion system, 

∂ γ U 

∂t γ
= d 

∂ βU 

∂x β
+ F (u ) , (1.1) 

where ∂ γ U 
∂t 

and 

∂ βU 

∂x β
are the derivative operators, parameter d is 

the dimensionless diffusion coefficient, or the diagonal matrix d = 

diag [ d 2 
i 

] > 0 , and the term F ( U ) accounts for the local (or reaction) 

kinetics. 

A time fractional reaction-diffusion version of (1.1) is a system 

of the form 

C D 

γ
t U(t) = d 

∂ 2 U 

∂x 2 
+ F (U) (1.2) 

with two variables U = (u, v ) T on x ∈ (0, L ), subject to any of 

the boundary conditions (see, [30] ): (i) For the infinite sys- 

tem, x ∈ (−∞ , ∞ ) , here R is a subset of (−∞ , ∞ ) . (ii) For x ∈ 

[0 , L ] , ∂u 
∂x 

(0 , t) = 

∂u 
∂x 

(L, t) = 0 , no-flux or Neumann boundary con- 

dition for a finite system, and (iii) x ∈ [0 , L ] , u (0 , t) = u (L, t) = u a , 

called the Dirichlet or fixed concentration boundary condition, also 

for a fixed system, where u ( t , x ) ∈ R 

n , F : R 

n → R , with component 
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v having similar expression. And F = ( f, g) T , f ( u, v ), g ( u, v ) are 

smooth reaction kinetics. 

The fractional derivative C D 

γ
t u (t) on the left-hand side of 

(1.2) is defined by the Caputo derivative of order 0 < γ < 1 in time, 

and is given as [37] 

C D 

γ
t u (t ) = 

∂ γ u 

∂t γ
= 

1 

�(n − γ ) 

∫ t 

0 

u 

(n ) (τ ) 

(t − τ ) γ +1 −n 
dτ (1.3) 

where n − 1 < γ < n . The space fractional reaction-diffusion sys- 

tem is obtained by substituting γ = 1 in (1.1) . The first term to 

the right-hand side of (1.1) can be represented by the Riemann–

Liouville fractional derivative, that is, 

∂ βu 

∂x β
= 

1 

�(1 − β) 

∂ 

∂x 

∫ x 

0 

u (s, x ) 

(x − s ) β
ds, (1.4) 

where 1 < β ≤ 2. It should be mentioned that when β = 2 , we re- 

call the standard case. 

The aim of this paper is structured into sections as follows. 

Analysis of the main result using the Mittag–Leffler and discretiza- 

tion techniques for fractional reaction-diffusion systems are pre- 

sented in Section 2 . Specific examples are analysed for stability 

(Hopf and Turing instabilities) in Section 3 , to gain a full under- 

standing of the parameters range when numerically simulating the 

whole systems. Numerical experiments in one and two dimen- 

sions are reported in Section 4 . The conclusion will be drawn in 

Section 5 . 

2. Main results and discretization techniques 

In thus section, we present the main results and the methods 

of discretization. 

2.1. Main results 

Let us consider the differential equations 

C D 

γ
a u (t) = g(t) u + f (t) , t a < t < t a + T , T > 0 , u (t a ) = u a , 

0 < γ < 1 (2.5) 

where g ( t ) and f ( t ) are both continuous on closed interval t a < t < 

t a + T , and the term 

C D 

γ
a represents the Caputo fractional deriva- 

tive of order γ . Throughout this work, we let a = 0 , and seek so- 

lution u ( t ) of (2.5) , which is assumed to be continuously differen- 

tiable, that is C 1 on [ t 0 , t 0 + T ] . Bear in mind that if u ∈ C 1 ([ t 0 , t 0 + 

T ] , R ) , then u ∈ C 1 � on ([ t 0 , t 0 + T ] , R ) , see [18] for details. 

The solution of (2.5) is also the solution of the equation of the 

form 

u (t) = u 0 + 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) u (ξ ) dξ

+ 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 f (ξ ) dξ (2.6) 

for t 0 < t < t 0 + T , T > 0 . Eq. (2.6) is often referred to as the 

Volterra fractional integral equation [18,37,38] . 

Theorem 2.1. Let g ( t ) and f (t) ∈ C([ t 0 , t 0 + T ] , R ) then we can sym- 

bolically write the solution of (2.5) as 

u (t) = u 0 e 
C D −γ

0 
g(t) + 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 e 
C D −γ

0 
g(ξ ) f (ξ ) dξ , 

for t 0 < t < t 0 + T , T > 0 , γ ∈ [0 , 1] . 

Proof. Since (2.6) is considered as the solution of (2.5) , we define 

the u n ( t ) by 

u n (t) = u 0 + 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) u n −1 (ξ ) dξ

+ 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 f (ξ ) dξ , t 0 < t < t 0 + T , T > 0 . (2.7) 

Beginning with the initial approximation u 0 (t) = u 0 , we have 

u 1 (t) = u 0 + 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) u 0 dξ

+ 

1 

�(γ ) 

∫ t 

t 0 

(t −ξ ) γ −1 f (ξ ) dξ , t 0 < t < t 0 + T , T > 0 (2.8) 

which we simplify into 

u 1 (t) = u 0 [1 + D 

−γ
0 

g(t)] + D 

−γ
0 

f (t) . 

Since g(t) , f (t) , D 

−γ
0 

g(t) and D 

−γ
0 

f (t) are continuous on t 0 ≤ t ≤
t 0 + T , T > 0 , then they are uniformly continuous. 

If we let g(t) = κ, (a constant), then 

u 1 (t) = u 0 

(
1 + 

κ(t − t 0 ) 
γ

�(γ + 1) 

)
+ 

∫ t 

t 0 

(t − ξ ) γ −1 

�(γ ) 
f (ξ ) dξ . (2.9) 

Again,if | g ( t )| ≤κ , then 

| u 1 (t) | ≤ | u 0 | 
(

1 + 

κ(t − t 0 ) 
γ

�(γ + 1) 

)
+ 

∫ t 

t 0 

(t − ξ ) γ −1 

�(γ ) 
| f (ξ ) | dξ . (2.10) 

This shows that u 1 ( t ) is uniformly continuous on closed interval 

t 0 ≤ t ≤ t 0 + T , T > 0 . By following this process, we obtain 

u 2 (t) = u 0 + 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) u 1 dξ

+ 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 f (ξ ) dξ , (2.11) 

which we simplify into 

u 2 (t) = u 0 { 1 + D 

−γ
0 

g(t) + D 

−γ
0 

(g(t) D 

−γ
0 

g(t)) } 
+ 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) D 

−γ
0 

f (ξ ) dξ + D 

−γ
0 

f (t) . (2.12) 

By interchanging the order of integration in the form 

1 

�(γ ) 

∫ t 

t 0 

(t − ξ ) γ −1 g(ξ ) 

{∫ t 

t 0 

(ξ − ω) γ −1 f (ω) dω 

}
dξ

= 

1 

�(γ ) 

∫ t 

t 0 

(t −ξ ) γ −1 f (ξ ) 

{∫ t 

t 0 

(ξ −ω) γ −1 g(ω) dω 

}
dξ , (2.13) 

we finally obtain 

u 2 (t) = u 0 { 1 + D 

−γ
0 

g(t) + D 

−γ (g(t) D 

−γ
0 

g(t)) } 
+ D 

−γ
0 

{ (1 + D 

−γ
0 

g(t)) f (t) } . 
Also, if | g ( t )| ≤κ , then 

| u 2 (t) | ≤ | u 0 | 
[

1 + 

κ(t − t 0 ) 
γ

�(γ + 1) 
+ 

κ(t − t 0 ) 
2 γ

�(2 γ + 1) 

]

+ 

∫ t 

t 0 

(t − ξ ) γ −1 

[
1 

�(γ ) 
+ 

κ(t − t 0 ) 
γ

�(2 γ ) 

]
| f (ξ ) | dξ (2.14) 

which shows that u 2 ( t ) is continuous on [ t 0 , t 0 + T ] . Since u 1 ( t ) 

and u 2 ( t ) are uniformly continuous on [ t 0 , t 0 + T ] , T > 0 , by 
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