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a b s t r a c t 

Chaotic Set/Reset (RS) flip-flop circuits are investigated once again in the context of discrete planar dy- 

namical system models of the threshold voltages, but this time starting with simple bilinear (minimal) 

component models derived from first principles. The dynamics of the minimal model is described in de- 

tail, and shown to exhibit some of the expected properties, but not the chaotic regimes typically found 

in simulations of physical realizations of chaotic flip-flop circuits. Any electronic physical realization of 

a chaotic logical circuit must necessarily involve small perturbations from the ideal - usually with large 

or even nonexistent derivatives in small diameter subsets of the phase space. Therefore, perturbed forms 

of the minimal model are also analyzed in considerable detail. It is proved that very slightly perturbed 

minimal models can exhibit chaotic regimes, sometimes associated with chaotic strange attractors, as 

well as some of the bifurcations present in most of the differential equations models for similar physical 

circuit realizations. In essence, this work is a mathematical exploration of simple models that repro- 

duce the qualitative behavior of threshold control units of a chaotic RS flip-flop design. It is also shown 

that this method can be extended to other similar circuits. Validation of the approach developed is pro- 

vided by some comparisons with (mainly simulated) dynamical results obtained from more traditional 

investigations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Logical circuits are constructed using logic gates representing 

propositional connectives such as AND (conjunction), OR (disjunc- 

tion) and their negation. They, or more precisely physical approx- 

imations of ideal logical circuits, have important applications in 

multiplexers, registers, pseudo-random number generators, quan- 

tum network modeling and, in fact, virtually every microprocessor 

(see, e.g. [3] ). Consequently, having efficient methods for analyzing 

and predicting their behavior, such as by continuous or discrete 

dynamical systems models is of great value in design, analysis and 

evaluation. 

There are numerous examples of applications for these types of 

circuits mainly involving chaotic communication and random num- 

ber generation, such as [17,24] . A well-known example with many 

applications (including the design of quantum networks [41] ) is 

the RS flip-flop circuit in Fig. 1 , which is a feedback circuit com- 

prising two NOR gates (which are negations of OR gates). Note that 

an OR gate has an output of 1 when at least one of the inputs is 
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1 and an output of 0 when both inputs are zero, with 1 denoting 

true and 0 false. An ideal RS flip-flop circuit ( RSFF circuit ) is a logical 

feedback circuit represented in Fig. 1 , with input/output behavior 

described in Table 1 , which shows the set ( S ) and reset ( R ) inputs 

for the circuit consisting of two NOR gates with outputs Q and Q 

′ . 
The input to the output, denoted by (Q n , Q 

′ 
n ) → (Q n +1 , Q 

′ 
n +1 

) may 

be regarded as the action of a map from the plane R 

2 := { (x, y ) : 

x, y ∈ R } into itself, where R denotes the real numbers and in the 

ideal or perfect case, the coordinates assume the binary values {0, 

1}. 

The binary input/output behavior, with 0 and 1 representing 

false and true, respectively, is given in the following table. 

We are interested in studying RSFFs designed from Chua’s cir- 

cuit using a threshold control unit [4] , such as in Fig. 2 . The choice 

of a NOR implementation of the RSFF comes from the use of only 

NOR implementations in experiments due to the relative simplic- 

ity of construction as opposed to the NAND implementation. The 

model to be studied in what follows, is more realistic than the one 

that we formulated and investigated in [2] , which was primarily an 

ad hoc construct designed to mimic the known behavior of chaotic 

flip-flop circuit realizations. 

From the discrete dynamical system’s perspective, our first goal 

is to construct the simplest map of the plane (based on bilinear 

representations of the NOR gates) that models the logical proper- 
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Fig. 1. “Black box” schematic of a NOR gate implementation of a set/reset flip-flop 

circuit. 

Table 1 

Binary input/output of R − S

flip-flop circuit. 

S R S 1 := Q R 1 := Q ′ 

1 0 1 0 

0 1 0 1 

1 1 0 0 

0 0 1 or 0 0 or 1 

Fig. 2. Chaotic RS flip-flop circuit. 

ties of the RSFF circuit, with iterates that exhibit most of the in- 

teresting properties that follow from basic analysis or have been 

observed in the dynamics of a variety of physical realizations and 

their mathematical models. This begs the question of how the dy- 

namics of the planar map models are to be compared with that 

obtained from simulations of physical realizations of the chaotic 

RSFF circuit and directly from measurements of its flip-flop rela- 

tives and the analysis and simulations of the usual mathematical 

models, which we shall endeavor to address in what follows. 

The usual form of the mathematical models of chaotic log- 

ical circuits is traceable back to the pioneering work of Moser 

[30] ; namely, associated three-dimensional systems of piecewise- 

smooth, first-order, nonlinear autonomous ordinary differential 

equations (ODEs) obtained from applying Kirchhoff’s laws to the 

realizations. These realizations typically comprise such elements 

as capacitors, inductors and nonlinear resistors and exhibit highly 

oscillatory, very unstable and even chaotic dynamics ( metastable 

operation ), as experimentally observed in physical constructions 

and SPICE simulations in such studies as [20,21,26] , where tun- 

nel diodes of the type used in Chua’s circuit (see [4,6,7,32] ) are 

the key ingredients in the construction of the nonlinear resistors. 

However, nonlinear resistors are not always necessary ( e.g. [11,39] ). 

There are several connections between the solutions of the model 

ODEs and iterates of maps that can be used for dynamical compar- 

isons, among which are the following: As observed by Hamill et al. 

[15] , the autonomous nature of the logical circuit equations al- 

lows dynamical analysis via the iterates (snapshots) of a fixed time 

map, which can be reduced to a planar map in special cases as 

shown in Kacprzak and Albicki [20] and Kacprzak [21] . In addition, 

the application of a standard explicit one-step integration method 

is tantamount to the iteration of the map describing the scheme, 

thus enabling the (approximate) reduction from a continuous to 

a discrete dynamical system as shown e.g . in [8,19] . Of course, 

there is the well-known method of employing Poincaré sections 

to analyze three-dimensional continuous dynamical systems using 

two-dimensional discrete dynamical systems, which has been em- 

ployed in numerous investigations of chaotic logical circuit realiza- 

tions such as Feng & Loparo [13] , Murali et al. [32] , Okazaki et al. 

[33] and Ruzbehani et al. [37] . In fact, the 1-D Poincaré maps in 

[13] have features similar to the 1-D reduction of our system to the 

diagonal. There have also been investigations (such as [27] ) where 

the ODEs are reduced even further to a one-dimensional map. 

As it turns out, chaotic logical circuits can be realized using the 

famous circuit of Chua and its generalizations [6,7] , which have de- 

pended heavily powerful tools such as Poincaré maps, Melnikov 

functions and normal forms from the modern theory of dynam- 

ical systems and bifurcation theory (see [9,14,19,22,25,34,38,40] ) 

for their analysis. There is also another interesting connection be- 

tween realization of chaotic logical circuits and nonlinear maps 

that might afford an opportunity for comparisons with the re- 

sults obtained from our two-dimensional discrete dynamical sys- 

tem models. This nonlinear map approach has been established in 

the work of Ditto et al. [12] , which features the notion of recon- 

figurable logic gates comprising connected NOR and NAND gates 

constructed using one-dimensional discrete dynamical systems and 

associated thresholds. 

Our investigation begins in earnest in Section 2 , where we de- 

fine a (minimal) planar map model of the threshold voltages - 

derived directly from the ideal RSFF - that plays a foundational 

role throughout the sequel. Moreover, we derive some basic prop- 

erties of the minimal map concerning such things as smoothness 

and the existence and description of an inverse. This is followed 

in Section 3 with a more thorough analysis of the fixed points of 

the minimal map - including a local stability analysis and an anal- 

ysis of stable and unstable manifolds. As a result of this more de- 

tailed investigation, we find that the dynamics is quite regular, as 

expected, when the domain of the map is appropriately restricted. 

Next, in Section 4 we prove that (one-dimensional) chaos can be 

generated by localized arbitrarily small C 0 perturbations of the 

map. For example, it is shown that a tent map can be embedded in 

a (one-dimensional) stable manifold of a fixed point by such a per- 

turbation, thereby inducing the well-known chaotic tent dynamics. 

We then prove the existence of several types of more substantial 

(two-dimensional) chaotic regimes for arbitrarily small localized 

C 0 perturbations in Section 5 . In particular, we show that local- 

ized arbitrarily C 0 small perturbations can be fashioned to produce 

transverse intersections in homoclinic orbits and heteroclinic cy- 

cles that generate chaos, horseshoe chaos, multihorseshoe strange 

chaotic attractors, snap-back repeller chaos and Neimark–Sacker 

bifurcations. In Section 6 , we illustrate our theorems and investi- 

gate indicators of chaos and other interesting dynamical properties 

using numerical simulations of our perturbed models. Finally, in 

Section 7 , we briefly summarize our results, describe some inter- 

esting areas of application and discuss a few envisaged plans for 

related future research. 
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