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In this manuscript, an approximate method for the numerical solutions of fractional order Cauchy re- 

action diffusion equations is considered. The concerned method is known as optimal homotopy asymp- 

totic method (OHAM). With the help of the mentioned method, we handle approximate solutions to the 

aforesaid equation. Some test problems are provided at which the adapted technique has been applied. 

The comparison between absolute and exact solution are also provided which reveals that the adapted 

method is highly accurate. For tabulation and plotting, we use matlab software. 
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1. Introduction 

In the recent few decades the basic importance of fractional or- 

der partial differential equations(FPDEs) is well known fact in var- 

ious physical and engineering disciplines. As most of the physi- 

cal phenomenons can be modeled by using (FPDEs) in numerous 

fields of science and engineering like biology, chemistry, mechan- 

ics, economics, polymer, aerodynamics, biophysics, control theory 

and many more, (see for example [1,2,3,6] ). It has been frequently 

observed in various physical phenomenons that the classical dif- 

ferential operator, being local in nature. It is very difficult task to 

form mathematical model to every physical phenomena via clas- 

sical differential operator, because it can not well explain certain 

phenomenons specially problems having hereditary properties. On 

other hand fractional order-operators are nonlocal in nature and 

have memory effects as well as the embedded capability to ex- 

plain and describe physical phenomenons which can not be de- 

scribed accurately via classical differential equations. The nonlocal 
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property of fractional order-operators in the field of (FPDEs) is a 

reason of its popularity in modeling certain chemical, psychologi- 

cal, biological, physical, thermoplasticity and mechanical system . 

One of the nonlocal process is the diffusion processes and is nicely 

modeled by several researchers via fractional order diffusion equa- 

tions. Among others, we want to bring the attention of the readers 

to [7] , in which the authors studied the fractional diffusion in dis- 

creet case. In [8] , the authors investigate fractional order diffusion 

and presents some simulations results. In [9] , a detailed analysis 

is presented for the numerical investigation of distributed order 

diffusion equations. Gómez–Aguilar [10,11] , presented a detailed 

study on the application of fractional order diffusion equations to 

some applied problems of mechanics. The fractional order opera- 

tors are nonlocal operators and provide greater degree of freedom 

in the models as compare to classical integer order which is local 

operator and does not allow greater degree of freedom for mod- 

eling. On the other hand the computation complexities involved 

in fractional order models is a goal and difficulty to solve them. 

Some times, we are not capable to obtain the exact analytic so- 

lution of each and every (FPDEs). However there exists a large 

variety of schemes, which have been proved to be supportive in 

obtaining approximate solution of the fractional order problems. 

Among others, we want to bring the attention of the readers to 

these schemes like, Fourier series method(FSM), Finite difference 
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method(FDM), Adomian decomposition method(ADM), Method of 

radial base function(MRBFs), Homotopy analysis method(HAM), 

Wavelet techniques(WT), Spectral methods [12,13] and many more. 

These schemes have there own merits and demerits. Some of them 

provide a very good approximation. For instance, see the articles 

[14–20] . Keeping in view , the above methods and the computa- 

tion complexities involved in fractional order models, we are intro- 

ducing a modified scheme known as optimal homotopy asymptotic 

method(OHAM) which is easy with respect to geometry and im- 

plementation to handle the computation complexities in construct- 

ing the approximate solution as well exact solution of the (FPDEs). 

This method was introduced by Marinca et al. [21] , in 2008, but 

we have organized this method with little bit changes in its orig- 

inal scheme for solving different type of (FPDEs). We have testi- 

fied this proposed method by considering the test problems that 

are fractional order partial reaction diffusion equation and its var- 

ious cases. The fractional order reaction diffusion equation [4,5] , is 

given by 

∂ βω(x, t) 

∂ t β
= c 

∂ 2 ω(x, t) 

∂ x 2 
+ r(x, t) ω(x, t) , ( x, t ) ∈ �. (1) 

If β = 1 , then it becomes classical reaction diffusion equation and 

the term c(x, t) ∂ 
2 ω(x,t) 

∂ x 2 
is diffusion term and r ( x, t ) ω( x, t ) repre- 

sents the reaction term. where ω( x, t ) is the concentration, r ( x, t ) 

is the reaction parameter and c is the diffusion coefficient. 

The plan of our work is organized as: In Section 2 , we have 

provided some basic properties and definitions form fractional cal- 

culus. The basic idea (OHAM) has been presented in Section 3 . In 

Section 4 , we have tested various problems to support the accuracy 

and efficiency of the proposed method. The last section is devoted 

to a short conclusion. 

2. Preliminaries 

In this section, we recall some basic definitions and known re- 

sults of fractional calculus and applied analysis, (see [1,2,3,7] ). 

Definition 2.1. The Rieman–Liouville fractional integral of order 

α ∈ R + of a function h (t) ∈ L ([0 , 1] , R ) is defined by 

J α0 h (t) = 

1 

�(α) 

∫ t 

0 

(t − s ) α−1 h (s ) ds, (2) 

provided that the integral on the right side converges. 

Definition 2.2. For μ ∈ R , a function f : R → R 

+ is said to be 

in the space C μ if it can be written as f (x ) = x q f 1 (x ) with 

q > μ, f 1 ( x ) ∈ C [0, ∞ ) such that f (x ) ∈ C n μ if f ( n ) ∈ C μ for n ∈ N ∪ { 0 } . 
Definition 2.3. The Caputo fractional order derivative of a function 

h ∈ C n −1 
with n ∈ N ∪ { 0 } is defined by 

D 

α
t h (t) = 

{
J n −α f (n ) , n − 1 < α ≤ n, n ∈ N , 
d n 

dt n 
h (t) , α = n, n ∈ N . 

(3) 

Note: Throughout this paper, we use fractional order derivative 

in Caputo sense. 

Definition 2.4. A two parameter Mittag–Leffler function is defined 

by 

E α,β (t) = 

∞ ∑ 

k =0 

t k 

�(kα + β) 
. (4) 

From (4) for α = β = 1 , we get E 1 , 1 (t) = e t and E 1 , 1 (−t) = e −t . 

3. Theory of proposed method 

In this section, we first recall some results from [22–25] . 

Consider the fractional order Cauchy reaction diffusion Eq. 

(1) as 

∂ βω(x, t) 

∂ t β
= N ( ω(x, t) ) + g(x, t) 0 < β ≤ 1 , x ∈ �, t ∈ [ a 0 , a 1 ] , 

(5) 

corresponding to initial conditions 

A 

(
ω (x, t) , 

∂ω (x, t) 

∂t 

)
= 0 , t ∈ { a 0 , a 1 } , (6) 

where, the operator ∂ β

∂ t β
is described in the Caputo sense , the term 

N ( ω( x, t )) will be linear or non linear or both simultaneously, the 

function ω( x, t ) is unknown solution which we will find, g ( x, t ) is 

given known expression, x and t are spatial and temporal indepen- 

dent variables respectively, � is domain and A is boundary oper- 

ator. According to the definition of optimal homotopy ϖ( x, t, p ): 

�× [0, 1] → R satisfies 

(1 − p) 

(
∂ β� (x, t, p) 

∂ t β
− g(x, t) 

)

−H(t, p) 

(
∂ β� (x, t, p) 

∂ t β
− ( N(� (x, t, p)) + g(x, t) ) 

)
= 0 . (7) 

Where p ∈ [0, 1] is auxiliary constant which is known as embed- 

ding parameter, x ∈ � and H ( t, p ) is an arbitrary chosen auxiliary 

function. It is necessary that H ( t, p ) must not equal to zero for all 

p except at p = 0 . According to the defined homotopy 

� (x, t, p) = ω 0 (x, t) at p = 0 , 

� (x, t; p) = ω(x, t) at p = 1 . 

When p ∈ [0, 1] varies in the defined homotopy ensures a speedy 

convergence of ϖ( x, t, p ) to the exact solution .The precise ex- 

ecution of the (OHAM), is purely based on the fair selection of 

the auxiliary function. The region of fast convergence of (OHAM) 

approximation to the exact solution depends strictly on auxiliary 

function H ( t, p ). Essentially, the expression in auxiliary function fol- 

lows the terms appearing in N ( ω( x, t )) such that the product of the 

auxiliary function and N ( ω( x, t )) to be of the similar form. As 

H(t, p) = p λ1 (t, C i ) + p 2 λ2 (t, C i ) + p 3 λ3 (t, C i ) + . . . . (8) 

Where C i , i = 1 , 2 , 3 , . . . are auxiliary constants and λi (t, C i ) , i = 

1 , 2 , 3 , . . . is a function of t and C i . But to choose λi ( t, C i ) is purely 

on the basis of terms appear in nonlinear part N ( ω( x, t )) and g ( x, 

t ). On the subject of this valuable and logical point, we choose 

λ1 (t, C i ) = C 1 , λ2 (t, C i ) = C 2 , λ3 (t, C i ) = C 3 . . . , for our chosen frac- 

tional problems in our work because the similar form of each so- 

lution of simpler problem has been obtained in the simulation sec- 

tion. Expanding ϖ( x, t, p ) in Taylor’s series about p , we have 

� (x, t, p) = ω 0 (x, t) + 

∞ ∑ 

k =1 

ω k (x, t) p k , i = 1 , 2 , 3 , . . . . (9) 

A key point is to be noted that Eq. (9) converges to the desire so- 

lution at p = 1 as 

˜ ω (x, t) = ω 0 (x, t) + 

∞ ∑ 

k =1 

ω k (x, t) . (10) 

Generally speaking, someone may truncate Eq. (10) into finite 

terms for to obtain the solution in few iteration. 

By substituting Eq. (9) into Eq. (7) and equating co-efficient 

of like powers of the p , we obtain zero-order, first-order, second- 

order and high order problems respectively as follows: 

p 0 : 
∂ αω 0 (x, t) 

∂ t α
− g ( x, t ) = 0 , 
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