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a b s t r a c t 

We investigate the dynamics of a Van der Pol–Duffing forced oscillator, which is modelled by a five- 

parameter second order nonautonomous nonlinear ordinary differential equation. Firstly we fix three of 

these parameters, and investigate the dynamics of this system by varying the other two, namely the 

amplitude and the angular frequency of the external forcing. We also investigate the existence of different 

attractors, periodic, quasiperiodic, and chaotic. Finally, we investigate the occurrence of multistability in 

the considered Van der Pol–Duffing forced oscillator, for some fixed sets of parameters. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In this paper we investigate numerically the nonlinear dynam- 

ics of a Van der Pol–Duffing forced oscillator, whose general math- 

ematical form is given by [1] 

ẍ − μ(1 − x 2 ) ̇ x + ω 

2 
0 x + αx 3 = f cos (ωt) , (1) 

where f and ω are respectively the amplitude and the angular 

frequency of the external forcing, and μ, ω 0 , and α are control 

parameters related to the respective unforced system. As can be 

seen in Eq. (1) , the dissipation is modelled by a nonlinear veloc- 

ity dependent term given by G (x, ˙ x ) = −μ(1 − x 2 ) ̇ x , the damping 

force is derived from a potential function V (x ) = ω 

2 
0 

x 2 / 2 + αx 4 / 4 

which represents a double-well potential when ω 0 < 0, α > 0, and 

F (t) = f cos (ωt) is a sinusoidal external forcing. 

It is straightforward to show that Eq. (1) reduces to 

ẍ + ω 

2 
0 x + αx 3 = f cos (ωt) , (2) 

when μ = 0 , which may be considered as one of the simplest ver- 

sions of the Duffing equation [2] , investigated originally in the con- 

text of vibrations. Alternatively, if we consider α = 0 Eq. (1) be- 

comes 

ẍ − μ(1 − x 2 ) ̇ x + ω 

2 
0 x = f cos (ωt) , (3) 
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which is the Van der Pol equation [3] with an external forcing. Al- 

though the Van der Pol oscillator has been originally proposed to 

model electrical circuits, it was also used as a mathematical model 

in other fields of the knowledge, for instance in physical [4] and 

biological [5] systems. 

Van der Pol-Duffing oscillators forced in different ways have a 

wide usage in many fields, with consequent application to model 

the most varied nonlinear processes. Some few examples consider 

the modeling of the stochastic response of a vibroimpact system 

under additive colored noise excitation [6] and optical bistability 

in a dispersive medium [7] . Additionally, couplings of Van der Pol–

Duffing oscillators are useful to model electroencephalogram sig- 

nals [8] and microelectromechanical systems resonators [9] , which 

have significant use as sensors, biomedical implants, and wireless 

communication devices. 

Because of this wide range of applications, the nonlinear dy- 

namics of the Van der Pol–Duffing oscillator has been investigated 

widely in these years. More recently an analytical investigation, 

concerning the nonlinear dynamics of the Van der Pol–Duffing 

forced oscillator modeled by Eq. (1) was reported by Cui and col- 

laborators [1] . In this reference, based on the homotopy analy- 

sis method, the authors showed that unstable periodic solutions 

can be obtained for the oscillator (1) , when the set of parameters 

μ = 0 . 1 , ω 0 = α = f = 1 , and ω = 2 is considered. Also recently, 

another Van der Pol–Duffing forced oscillator, obtained by mak- 

ing ω 0 = 0 , α = 1 , and f = 1 was investigated considering ω as a 

control parameter [10] . This time, multistability, the coexistence of 

attractors for a given set of parameters, was detected. Coupled 
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Fig. 1. Regions and colors in the ( ω, f ) parameter plane of system (1) , according 

to estimates of the Lyapunov exponents (see the text). (a) Considering the largest 

Lyapunov exponent. (b) Considering the second largest Lyapunov exponent. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

Van der Pol-Duffing forced oscillators were also investigated in 

Ref. [10] . 

Our contribution to advancing the knowledge of the Van der 

Pol–Duffing forced oscillator, involves an investigation concerning 

the organization of different dynamical behaviors, namely chaos, 

quasiperiodicity, and periodicity, in the ( ω, f ) parameter plane of 

system (1) . For this purpose, the parameters related to the unforced 

system in Eq. (1) are kept fixed as μ = 0 . 5 , ω 0 = α = 1 , and ( ω, 

f ) parameter plane plots displaying dynamical behaviors are con- 

structed. The Lyapunov exponents spectrum is used to numerically 

characterize the dynamics of each point in these parameter planes. 

Additional contribution of our work is related to studies on multi- 

stability in system (1) , with the consequent construction of basins 

of attraction for suitable places in the ( ω, f ) parameter planes men- 

tioned above. 

The paper is organized as follows. In Section 2 we present 

numerical results related to the organization of the dynamics in 

the ( ω, f ) parameter plane of system (1) . Basins of attraction of 

system (1) are considered in Section 3 . Finally, concluding remarks 

are given in Section 4 . 

2. The ( ω, f ) parameter plane of the Van der Pol–Duffing 

oscillator 

The diagrams in Fig. 1 show a global vision of the dynamical 

behaviors present in the ( ω, f ) parameter plane of system (1) , when 

μ = 0 . 5 , ω 0 = α = 1 . Estimates to the values of the largest and the 

second largest Lyapunov exponent (LLE) are associated to colors, 

respectively in diagrams (a) and (b), according to the color scale 

at right hand side in each of them. Hence, a same region that ap- 

pears painted in black in both diagrams of Fig. 1 is corresponding 

to ( ω, f ) parameters for which the related attractors in the phase- 

space are quasiperiodic, since the LLE and the second LLE are both 

equal to zero for points in this region. This quasiperiodic region is 

that at the bottom in the diagrams of Fig. 1 . On the other hand, a 

same region that appears painted in black in Fig. 1 (a) and painted 

in grey in Fig. 1 (b), is corresponding to ( ω, f ) parameters that gen- 

erate periodic attractors in the phase-space. In this case, the LLE is 

Fig. 2. Enlargement of the region inside the box in Fig. 1 (a). With regard to the 

straight line in red, see the text. Numbers refer to periods. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version 

of this article.) 

equal to zero, and the second LLE is less than zero. To complete the 

interpretation of the colors in the diagrams of the Fig. 1 , we need 

to talk about a same region painted with a gradient from yellow 

to red in Fig. 1 (a), and painted in black in Fig. 1 (b). Such region is 

corresponding to ( ω, f ) parameters for which the related attractors 

in the phase-space are chaotic. Points in this region are character- 

ized by a LLE greater than zero and a second LLE equal to zero. 

This procedure, which uses the Lyapunov exponents spectra, more 

specifically the two LLE, to numerically characterize the dynamics 

of points in parameter planes of a three-dimensional continuous- 

time dissipative dynamical system, is based in a method explained 

in details in Ref. [11] . 

The ( ω, f ) diagrams (a) and (b) in Fig. 1 , were obtained by 

computing respectively the LLE and the second LLE, in a grid of 

10 3 × 10 3 parameters. System (1) was integrated by using a fourth- 

order Runge-Kutta algorithm, with a fixed time step equal to 10 −3 , 

being considered 1 × 10 6 integration steps. Thus, the average in- 

volved in the computation of the Lyapunov exponents spectrum, 

was performed by considering 1 × 10 6 points of the respective tra- 

jectory in the phase-space, for each one of the 1 × 10 6 pairs of pa- 

rameters. Each diagram in Fig. 1 was constructed from an initial 

condition within the basin of attraction of system (1) , for a fixed 

pair of parameters, in fact the two lowest ω = 2 and f = 1 . The 

variables [12] at the end of the integration for this pair of parame- 

ters were used to initialize the integration to the next pair, and so 

forth up to the highest value of both parameters, ω = 5 and f = 10 , 

be achieved. 

As we can see in diagrams of Fig. 1 , for a small amplitude of 

the forcing f , near to f = 1 , the Van der Pol–Duffing forced os- 

cillator is quasiperiodic in a large range of the investigated angu- 

lar frequency, namely for 2.2 < ω < 5 approximately. Born in this 

quasiperiodic region of the ( ω, f ) parameter plane, and spreading 

by the chaotic region, we observe organized periodic structures, 

similar to the Arnold tongues present in the circle map [13] , de- 

tected and measured in experiments involving wave-particle inter- 

action [14] . These organized periodic structures are better seen in 

the amplification of the boxed region of Fig. 1 (a), which is shown 

in Fig. 2 . Number identifying each periodic window in Fig. 2 is 

related with the period of the respective structure, being period 

here assumed as the number of local maxima of the variable x [12] , 

namely x m 

, in one complete orbit on the (x, ˙ x ) phase-space attrac- 

tor. Such windows are usually displayed in conventional bifurcation 

diagrams like that shown in Fig. 3 , which helps us to determine the 

periods of some structures, like that numbered in Fig. 2 . 

The bifurcation diagram in Fig. 3 considers 10 3 points along 

the red straight line f = 3 . 4 ω − 6 . 51 , that crosses the periodic 

structures in Fig. 2 . It was obtained by plotting the local maxima 

values of the variable x , as a function of the parameter ω. As before 

in obtaining Figs. 1 and 2 , integrations were performed by using 
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