
Chaos, Solitons and Fractals 100 (2017) 57–61

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Chaos time-series prediction based on an improved recursive

Levenberg–Marquardt algorithm

Xiancheng Shi a , b , Yucheng Feng

a , b , ∗, Jinsong Zeng

a , b , Kefu Chen

a , b

a School of Light Industry and Engineering, South China University of Technology, Guangdong, 510641, China
b State Key Laboratory of Pulp and Paper Engineering, Guangdong, 510641, China

a r t i c l e i n f o

Article history:

Received 14 December 2016

Revised 10 April 2017

Accepted 18 April 2017

Keywords:

Recursive algorithm

Levenberg–Marquardt

On-line learning

Neural networks

a b s t r a c t

An improved recursive Levenberg–Marquardt algorithm (RLM) is proposed to more efficiently train neural

networks. The error criterion of the RLM algorithm was modified to reduce the impact of the forgetting

factor on the convergence of the algorithm. The remedy to apply the matrix inversion lemma in the RLM

algorithm was extended from one row to multiple rows to improve the success rate of the convergence;

after that, the adjustment strategy was modified based on the extended remedy. Finally, the performance

of this algorithm was tested on two chaotic systems. The results show improved convergence.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The steepest descent method based on error back-propagation

(SDBP) is generally regarded as the most common algorithm

among all the supervised learning algorithms for training neu-

ral networks. However, major drawbacks of SDBP include its slow

convergence speed and tendency to be entrapped in a local opti-

mum. Because of the fast and stable convergence, the Levenberg–

Marquardt (LM) algorithm has received widespread attention for

producing a search direction between the Gauss-Newton and the

steepest descent directions among the improved algorithms of

SDBP [1] . However, the limitation on the computational time and

storage space of the LM algorithm will still be problems when

there are a large number of training samples and node weights.

Therefore, it is necessary to explore the potential of the LM algo-

rithm to overcome these problems.

Many studies have been carried out on the off-line LM algo-

rithm for training neural networks aimed at less computation and

storage [2–4] , improved convergence properties [5,6] , and general-

ization performance [7,8] . An on-line LM algorithm is highly de-

sirable when the process to be modeled is time varying or when

it is impossible to obtain sufficient off-line data. To explore the

potential of the LM algorithm, a recursive LM algorithm for the

on-line training of neural networks has been proposed [9,10] . By

∗ Corresponding author at: School of Light Industry and Engineering, South China

University of Technology, Guangdong, 510641, China.

E-mail addresses: xianchengshi@126.com (X. Shi), fengyc@scut.edu.cn (Y. Feng),

fezengjs@scut.edu.cn (J. Zeng), ppchenkf@scut.edu.cn (K. Chen).

neglecting interneuron weight correlations, RLM algorithms can

be decomposed at the neuron level, enabling weights to be up-

dated in an efficient parallel manner [11] . Among RLM algorithms,

a temporal difference RLM has been developed to improve the

action-dependent adaptive critic performance in terms of conver-

gence and parameter shadowing [12] ; a general recursive Bayesian

Levenberg–Marquardt algorithm was also derived to obtain better

generalization and stable numerical performance [13] . An on-line

implementation of the LM algorithm based on a sliding window

was developed for overcoming the difficulties in the implementa-

tion of the iterative version [14,15] , in which a batch-sliding win-

dow with early stopping was applied. Compared to the recursive

LM algorithm, the on-line LM algorithm based on a sliding win-

dow needs more storage space and has a higher computational

cost, while the two main drawbacks of the RLM are the slow con-

vergence speed due to the forgetting factor and instability caused

by the remedy to apply the matrix inversion lemma.

The neural networks have performed well in the prediction of

nonlinear and chaotic time series, they can present the most accu-

rate one-step or multi-step ahead predictions [16–19] . In this pa-

per, we propose an improved recursive Levenberg–Marquardt algo-

rithm to improve the performance of the RLM algorithm in terms

of convergence and apply the algorithm to online training of neural

networks for prediction of chaotic time-series.

The paper is organized as follows. In Section 2 , the off-line

Levenberg–Marquardt algorithm is described. Section 3 presents

the improved RLM algorithm, including a complete derivation of

the improved RLM algorithm based on a corrected error criterion,

the extended remedy to apply the matrix inversion lemma in the

http://dx.doi.org/10.1016/j.chaos.2017.04.032

0960-0779/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.chaos.2017.04.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.04.032&domain=pdf
mailto:xianchengshi@126.com
mailto:fengyc@scut.edu.cn
mailto:fezengjs@scut.edu.cn
mailto:ppchenkf@scut.edu.cn
http://dx.doi.org/10.1016/j.chaos.2017.04.032

58 X. Shi et al. / Chaos, Solitons and Fractals 100 (2017) 57–61

improved RLM algorithm, and the modified adjustment strategy

based on the extended remedy. Section 4 presents the experiment

results, and finally, a brief conclusion is provided in Section 5 .

2. Levenberg–Marquardt algorithm

Neural networks can be used to approximate any complicated

nonlinear mapping thanks to the properties of parallel comput-

ing and self-learning. Recurrent neural networks (RNNs) are widely

used for system identification and control because of their good

dynamic performance in terms of memory and feedback of the in-

termediate states of the RNNs. The performance index of the RNNs

is defined as

V (t, W) =

1

2

e T (t, W) e (t, W) =

1

2 n P

n P ∑

r=1

n O ∑

k =1

(
T r,k (t) − O r,k (t, W)

)2

(1)

where e (t , W) is a residual error vector with the form

[e 1 , 1 (t, W) , · · · , e 1 , n O (t, W) , · · · , e n P , 1 (t, W) , · · · , e n P , n O (t, W)] T , W is

the node weight vector with the form [W 1 , ���, W d]
T , n P and n O

are the sample size and output layer node number, d is the total

number of weights of neural networks, and O r, k (t , W) and T r, k (t)

are the outputs and the corresponding targets.

The LM algorithm can be expressed as

�W = −[∇

2 V (t, W)] −1 ∇V (t, W)

= −[J (t, W) T J (t, W) + δI] −1 J T (t, W) e k (t, W) (2)

where �W is the change in W , ∇

2 V (t , W) and ∇V (t , W) are the

Hessian matrix and the first derivative matrix, J (t , W) is Jacobian

matrix, and δ is the regularized parameter of LM algorithm. Fur-

ther details are provided in [1].

3. The modified recursive Levenberg–Marquardt algorithm

The LM algorithm (6) is unable to incorporate new measure-

ments without reprocessing the entire batch [15] , and it cannot

be applied to system identification, adaptive control, or time-series

modeling of systems that are time-variant or real-time. An online

learning algorithm is necessary to effectively adapt the changes of

the dynamic systems. The recursive LM algorithm is an online al-

gorithm that has been proposed for the online training of neural

networks and other learning and self-adaption problems.

3.1. Corrected error criterion

The error criterion of the RLM algorithm was defined in [14] as

follows

V (t, W) =

1

2

t ∑

τ

λt−τ e 2 (τ, W) (7)

where 0 < λ ≤ 1 is the forgetting factor, which decides how fast

the relevance of past data should decrease. It is the sum of the for-

getting coefficient in Eq. (7) that will virtually slow down the con-

vergence speed of the RLM algorithm and that must be removed

to improve the convergence speed of the RLM algorithm. The sum

of the forgetting coefficient is

1 − λt

1 − λ
= λ0 + · · · + λt−1 . (8)

Thus, the error criterion should be corrected as

V ∗(t, W) =

1 − λ

1 − λt
V (t, W) =

1

2

1 − λ

1 − λt

t ∑

τ=1

λt−τ e 2 (τ, W) . (9)

Differentiating (9) with respect to W gives

V

′
∗(t, W) = − 1 − λ

1 − λt

t ∑

τ=1

λt−τ J T (τ, W) e (τ, W)

=

1 − λt−1

1 − λt
λV

′
∗(t − 1 , W) − 1 − λ

1 − λt
J T (t , W) e (t , W) ,

(10)

and differentiating once more

V

′′
∗(t, W) =

1 − λt−1

1 − λt
λV

′′
∗(t − 1 , W) +

1 − λ

1 − λt
J T (t , W) J (t , W)

− 1 − λ

1 − λt

∂ 2 e (t, W)

∂ W ∂ W

e (t, W) , (11)

multiplying (11) with (1 − λt) gives

(1 − λt) V

′′
∗(t, W) = λ(1 − λt−1) V

′′
∗(t − 1 , W)

+ (1 − λ) J T (t , W) J (t , W)

− (1 − λ)
∂ 2 e (t, W)

∂ W ∂ W

e (t, W) . (12)

If it is assumed that W is indeed the optimal estimate at time

t , then ∂ 2 e (t , W)/(∂ W ∂ W) ≈ 0. As J (t , W) T J (t , W) is a symmetri-

cal semi-definite matrix, a regularized unit matrix δI was added

to guarantee the approximate Hessian matrix positive definite [9] .

Choosing H (t) = (1 − λt) V

′′ ∗(t, W) + δI to normalize V

′′ ∗ (t , W) in

Eq. (12) , the improved RLM algorithm is

H (t + 1) = λH (t) + (1 − λ)(J (t, W) T J (t, W) + δI) (13a)

�W = −(1 − λt) H

−1 (t) J T (t , W) e (t , W) . (13b)

The RLM algorithm based on the error criterion (7) in [9,10] can

be expressed as

H (t + 1) = λH (t) + (1 − λ)(J (t, W) T J (t, W) + δI) (14a)

�W = −(1 − λ) H

−1 (t) J T (t, W) e (t, W) (14b)

where H (t) = (1 − λ) V

′′ (t, W) + δI . The difference between Eqs.

(13a,b) and (14a,b) are the coefficients (1 − λ) and (1 − λt) ; the

latter is close to 1, while the former is fixed when t increases con-

tinuously. When λ > 0.5, �W in Eq. (13b) is at least twice as much

as �W in Eq. (14b) , which will result in a better convergence prop-

erty in the improved RLM algorithm; while λ ≤ 0.5, the RLM al-

gorithm will have a similar convergence with the improved RLM

algorithm. In [11] , it is suggested that the forgetting factor λ range

from 0.95 to 0.99, while in [13] , a fast and accurate convergence is

observed when starting with λ = 0 . 90 . By reducing the impact of

the forgetting factor in Eq. (13a,b), we optimize the range of λ, to

be revealed in Section 4 .

3.2. Matrix inversion

The computation of a direct matrix inversion of Eq. (13a) is

O (n 3
W

) , which is time consuming when there are so many param-

eters in the applied system. The matrix inversion lemma [20] can

be used to reduce the computation complexity to O (n 2
W

) , and the

lemma expresses the following inversion

[A + BCD] −1 = A

−1 − A

−1 B [D A

−1 B + C

−1] −1 D A

−1 . (15)

Unfortunately, the matrix inversion lemma cannot be applied to

the improved RLM (13a) algorithm directly, and a possible remedy

Download English Version:

https://daneshyari.com/en/article/5499618

Download Persian Version:

https://daneshyari.com/article/5499618

Daneshyari.com

https://daneshyari.com/en/article/5499618
https://daneshyari.com/article/5499618
https://daneshyari.com

