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a b s t r a c t 

An improved recursive Levenberg–Marquardt algorithm (RLM) is proposed to more efficiently train neural 

networks. The error criterion of the RLM algorithm was modified to reduce the impact of the forgetting 

factor on the convergence of the algorithm. The remedy to apply the matrix inversion lemma in the RLM 

algorithm was extended from one row to multiple rows to improve the success rate of the convergence; 

after that, the adjustment strategy was modified based on the extended remedy. Finally, the performance 

of this algorithm was tested on two chaotic systems. The results show improved convergence. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The steepest descent method based on error back-propagation 

(SDBP) is generally regarded as the most common algorithm 

among all the supervised learning algorithms for training neu- 

ral networks. However, major drawbacks of SDBP include its slow 

convergence speed and tendency to be entrapped in a local opti- 

mum. Because of the fast and stable convergence, the Levenberg–

Marquardt (LM) algorithm has received widespread attention for 

producing a search direction between the Gauss-Newton and the 

steepest descent directions among the improved algorithms of 

SDBP [1] . However, the limitation on the computational time and 

storage space of the LM algorithm will still be problems when 

there are a large number of training samples and node weights. 

Therefore, it is necessary to explore the potential of the LM algo- 

rithm to overcome these problems. 

Many studies have been carried out on the off-line LM algo- 

rithm for training neural networks aimed at less computation and 

storage [2–4] , improved convergence properties [5,6] , and general- 

ization performance [7,8] . An on-line LM algorithm is highly de- 

sirable when the process to be modeled is time varying or when 

it is impossible to obtain sufficient off-line data. To explore the 

potential of the LM algorithm, a recursive LM algorithm for the 

on-line training of neural networks has been proposed [9,10] . By 
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neglecting interneuron weight correlations, RLM algorithms can 

be decomposed at the neuron level, enabling weights to be up- 

dated in an efficient parallel manner [11] . Among RLM algorithms, 

a temporal difference RLM has been developed to improve the 

action-dependent adaptive critic performance in terms of conver- 

gence and parameter shadowing [12] ; a general recursive Bayesian 

Levenberg–Marquardt algorithm was also derived to obtain better 

generalization and stable numerical performance [13] . An on-line 

implementation of the LM algorithm based on a sliding window 

was developed for overcoming the difficulties in the implementa- 

tion of the iterative version [14,15] , in which a batch-sliding win- 

dow with early stopping was applied. Compared to the recursive 

LM algorithm, the on-line LM algorithm based on a sliding win- 

dow needs more storage space and has a higher computational 

cost, while the two main drawbacks of the RLM are the slow con- 

vergence speed due to the forgetting factor and instability caused 

by the remedy to apply the matrix inversion lemma. 

The neural networks have performed well in the prediction of 

nonlinear and chaotic time series, they can present the most accu- 

rate one-step or multi-step ahead predictions [16–19] . In this pa- 

per, we propose an improved recursive Levenberg–Marquardt algo- 

rithm to improve the performance of the RLM algorithm in terms 

of convergence and apply the algorithm to online training of neural 

networks for prediction of chaotic time-series. 

The paper is organized as follows. In Section 2 , the off-line 

Levenberg–Marquardt algorithm is described. Section 3 presents 

the improved RLM algorithm, including a complete derivation of 

the improved RLM algorithm based on a corrected error criterion, 

the extended remedy to apply the matrix inversion lemma in the 
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improved RLM algorithm, and the modified adjustment strategy 

based on the extended remedy. Section 4 presents the experiment 

results, and finally, a brief conclusion is provided in Section 5 . 

2. Levenberg–Marquardt algorithm 

Neural networks can be used to approximate any complicated 

nonlinear mapping thanks to the properties of parallel comput- 

ing and self-learning. Recurrent neural networks (RNNs) are widely 

used for system identification and control because of their good 

dynamic performance in terms of memory and feedback of the in- 

termediate states of the RNNs. The performance index of the RNNs 

is defined as 

V ( t, W ) = 

1 

2 

e T ( t, W ) e ( t, W ) = 

1 

2 n P 

n P ∑ 

r=1 

n O ∑ 

k =1 

(
T r,k ( t ) − O r,k ( t, W ) 

)2 

(1) 

where e ( t , W ) is a residual error vector with the form 

[ e 1 , 1 ( t, W ) , · · · , e 1 , n O ( t, W ) , · · · , e n P , 1 ( t, W ) , · · · , e n P , n O ( t, W ) ] T , W is 

the node weight vector with the form [ W 1 , ���, W d ] 
T , n P and n O 

are the sample size and output layer node number, d is the total 

number of weights of neural networks, and O r, k ( t , W ) and T r, k ( t ) 

are the outputs and the corresponding targets. 

The LM algorithm can be expressed as 

�W = −[ ∇ 

2 V (t, W )] −1 ∇V (t, W ) 

= −[ J (t, W ) T J (t, W ) + δI ] −1 J T (t, W ) e k (t, W ) (2) 

where �W is the change in W , ∇ 

2 V ( t , W ) and ∇V ( t , W ) are the 

Hessian matrix and the first derivative matrix, J ( t , W ) is Jacobian 

matrix, and δ is the regularized parameter of LM algorithm. Fur- 

ther details are provided in [ 1 ]. 

3. The modified recursive Levenberg–Marquardt algorithm 

The LM algorithm (6) is unable to incorporate new measure- 

ments without reprocessing the entire batch [15] , and it cannot 

be applied to system identification, adaptive control, or time-series 

modeling of systems that are time-variant or real-time. An online 

learning algorithm is necessary to effectively adapt the changes of 

the dynamic systems. The recursive LM algorithm is an online al- 

gorithm that has been proposed for the online training of neural 

networks and other learning and self-adaption problems. 

3.1. Corrected error criterion 

The error criterion of the RLM algorithm was defined in [14] as 

follows 

V (t, W ) = 

1 

2 

t ∑ 

τ

λt−τ e 2 (τ, W ) (7) 

where 0 < λ ≤ 1 is the forgetting factor, which decides how fast 

the relevance of past data should decrease. It is the sum of the for- 

getting coefficient in Eq. (7) that will virtually slow down the con- 

vergence speed of the RLM algorithm and that must be removed 

to improve the convergence speed of the RLM algorithm. The sum 

of the forgetting coefficient is 

1 − λt 

1 − λ
= λ0 + · · · + λt−1 . (8) 

Thus, the error criterion should be corrected as 

V ∗(t, W ) = 

1 − λ

1 − λt 
V ( t, W ) = 

1 

2 

1 − λ

1 − λt 

t ∑ 

τ=1 

λt−τ e 2 ( τ, W ) . (9) 

Differentiating ( 9 ) with respect to W gives 

V 

′ 
∗(t, W ) = − 1 − λ

1 − λt 

t ∑ 

τ=1 

λt−τ J T (τ, W ) e (τ, W ) 

= 

1 − λt−1 

1 − λt 
λV 

′ 
∗(t − 1 , W ) − 1 − λ

1 − λt 
J T (t , W ) e (t , W ) , 

(10) 

and differentiating once more 

V 

′′ 
∗(t, W ) = 

1 − λt−1 

1 − λt 
λV 

′′ 
∗(t − 1 , W ) + 

1 − λ

1 − λt 
J T (t , W ) J (t , W ) 

− 1 − λ

1 − λt 

∂ 2 e (t, W ) 

∂ W ∂ W 

e (t, W ) , (11) 

multiplying ( 11 ) with (1 − λt ) gives 

(1 − λt ) V 

′′ 
∗(t, W ) = λ(1 − λt−1 ) V 

′′ 
∗(t − 1 , W ) 

+ (1 − λ) J T (t , W ) J (t , W ) 

− (1 − λ) 
∂ 2 e (t, W ) 

∂ W ∂ W 

e (t, W ) . (12) 

If it is assumed that W is indeed the optimal estimate at time 

t , then ∂ 2 e ( t , W )/( ∂ W ∂ W ) ≈ 0. As J ( t , W ) T J ( t , W ) is a symmetri- 

cal semi-definite matrix, a regularized unit matrix δI was added 

to guarantee the approximate Hessian matrix positive definite [9] . 

Choosing H (t) = ( 1 − λt ) V 

′′ ∗(t, W ) + δI to normalize V 

′′ ∗ ( t , W ) in 

Eq. (12) , the improved RLM algorithm is 

H (t + 1) = λH (t) + (1 − λ)(J (t, W ) T J (t, W ) + δI ) (13a) 

�W = −(1 − λt ) H 

−1 (t ) J T (t , W ) e (t , W ) . (13b) 

The RLM algorithm based on the error criterion ( 7 ) in [9,10] can 

be expressed as 

H (t + 1) = λH (t) + (1 − λ)(J (t, W ) T J (t, W ) + δI ) (14a) 

�W = −( 1 − λ) H 

−1 ( t ) J T ( t, W ) e ( t, W ) (14b) 

where H (t) = (1 − λ) V 

′′ ( t, W ) + δI . The difference between Eqs. 

(13a,b ) and (14a,b ) are the coefficients (1 − λ) and (1 − λt ) ; the 

latter is close to 1, while the former is fixed when t increases con- 

tinuously. When λ > 0.5, �W in Eq. (13b) is at least twice as much 

as �W in Eq. (14b) , which will result in a better convergence prop- 

erty in the improved RLM algorithm; while λ ≤ 0.5, the RLM al- 

gorithm will have a similar convergence with the improved RLM 

algorithm. In [11] , it is suggested that the forgetting factor λ range 

from 0.95 to 0.99, while in [13] , a fast and accurate convergence is 

observed when starting with λ = 0 . 90 . By reducing the impact of 

the forgetting factor in Eq. (13a,b ), we optimize the range of λ, to 

be revealed in Section 4 . 

3.2. Matrix inversion 

The computation of a direct matrix inversion of Eq. (13a) is 

O (n 3 
W 

) , which is time consuming when there are so many param- 

eters in the applied system. The matrix inversion lemma [20] can 

be used to reduce the computation complexity to O (n 2 
W 

) , and the 

lemma expresses the following inversion 

[ A + BCD ] −1 = A 

−1 − A 

−1 B [ D A 

−1 B + C 

−1 ] −1 D A 

−1 . (15) 

Unfortunately, the matrix inversion lemma cannot be applied to 

the improved RLM ( 13a ) algorithm directly, and a possible remedy 
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