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a b s t r a c t 

We take the delays due to gestation of two kinds of zooplankton as parameters, the dynamics of a two 

zooplankton-phytoplankton model is studied, we discussed the dynamics under six conditions: (1) τ1 = 

τ2 = 0 , (2) τ1 > 0 , τ2 = 0 , (3) τ1 = 0 , τ2 > 0 , (4) τ1 = τ2 > 0 , (5) τ 1 ∈ (0, τ 10 ), τ 2 > 0, (6) τ 2 ∈ (0, τ 20 ), τ 1 

> 0, the Hopf bifurcation about condition (5) should be studied by center manifold theorem and normal 

form. At last, some simulations are given to support our results 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

As we know, aquatic ecosystem is important for our en- 

vironment, where phytoplankton contribute to our climate by 

absorbing much carbon dioxide from atmosphere and creating 

oxygen, besides they act as the basis of food chain for aquatic 

ecosystem, zooplankton exist nearly in all marine and limnic 

environment, they offer other aquatic animal of food, so the work 

about dynamics of phytoplankton-zooplankton should be valuable. 

We know the density of plankton always increase and decrease 

or keep invariant for long time, why these situations occur? it is 

a interesting topic which cause many works, toxic phytoplankton 

are considered as factors, harmful algal bloom in [13] have adverse 

effect on the bloom of aquatic population, the phytoplankton 

produce toxin to preventing grazing of zooplankton, some works 

[14,15] describe the toxin play role on the bloom of plankton 

population, besides there exist many works about stability and 

bifurcation of phytoplankton-zooplankton system [7,16,17] . 

We know delays always exist in biology systems [18,19] , the 

dynamics always be determined by relative delays [1,20–22] , such 

as Hopf bifurcation occur when the delay spent by zooplankton 

migration in horizontal and vertical direction [1] cross the critical 

value. 

In the field of delayed plankton system, two kinds of delays 

are considered always, there are the gestation delay and delay 

required for maturity of toxic-phytoplankton, for example, the 
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global Hopf bifurcation is discussed when gestation delay exist [9] , 

the author discuss the Hopf bifurcation when the delay required 

for the maturity of toxin-phytoplankton [2,7] exist, assuming the 

gestation delay equal to the delay required for the maturity of 

toxic-phytoplankton, the author study the stability and global Hopf 

bifurcation [5] . But by now, there is seldom work about three kinds 

of plankton with delays. In [7] , Hopf bifurcation of a two harmful 

phytoplankton-zooplankton system with two delays is studied: 

⎧ ⎪ ⎨ 

⎪ ⎩ 

dP 1 
dt 

= r 1 P 1 (1 − P 1 
K 
) − α1 P 1 P 2 − ρ1 P 1 Z, 

dP 2 
dt 

= r 2 P 2 (1 − P 2 
K 
) − α2 P 1 P 2 − ρ2 P 2 Z, 

dZ 
dt 

= (r 1 P 1 + r 2 P 2 ) Z − dZ − θ1 P 1 (t − τ1 ) Z − θ2 P 2 (t − τ2 ) Z, 

(1.1) 

some simulations are given on 7 cases: (1) τ1 = 0 . 6 , τ2 = 0 , (2) 

τ1 = 8 . 0 , τ2 = 0 , (3) τ1 = 1 . 5 , τ2 = 0 , (4) τ1 = 20 , τ2 = 0 , (5) 

τ1 = 6 , τ2 = 5 , (6) τ1 = 6 , τ2 = 5 . 9 , (7) τ1 = 15 , τ2 = 6 , a two 

zooplankton-phytoplankton system with delay is studied in [2] , 

⎧ ⎪ ⎨ 

⎪ ⎩ 

dP 
dt 

= rP (1 − P 
K 
) − μ1 PZ 1 

α1 + P − μ2 PZ 1 
α2 + P , 

dZ 1 
dt 

= 

β1 PZ 1 
α1 + P − ρ1 P(t−τ ) Z 1 

α1 + P(t−τ ) 
− d 1 Z 1 − g 1 Z 

2 
1 , 

dZ 2 
dt 

= 

β2 PZ 1 
α2 + P − ρ2 P(t−τ ) Z 2 

α2 + P(t−τ ) 
− d 2 Z 2 − g 2 Z 

2 
2 , 

(1.2) 

In real world, we know more than one delays always coexist, so 

there exist many works about the hopf bifurcation of two delays 

[3,4,6,8] , the author analysis the bifurcation with two delays by 

center manifold and normal form, inspired by works above, similar 

to [2] , we only consider the gestation delays of two zooplankton, 
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system (1.2) became: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dP 
dt 

= rP (1 − P 
K 
) − μ1 PZ 1 

α1 + P − μ2 PZ 1 
α2 + P , 

dZ 1 
dt 

= 

β1 P(t−τ1 ) Z 1 (t−τ1 ) 
α1 + P(t−τ1 ) 

− ρ1 P(t) Z 1 
α1 + P(t) 

− d 1 Z 1 − g 1 Z 
2 
1 , 

dZ 2 
dt 

= 

β2 P(t−τ2 ) Z 1 (t−τ2 ) 
α2 + P(t−τ2 ) 

− ρ2 P(t) Z 2 
α2 + P − d 2 Z 2 − g 2 Z 

2 
2 , 

(1.3) 

where P, Z i , (i = 1 , 2) denote the density of phytoplankton and 

zooplankton respectively, τ 1 , τ 2 denote the gestation of the two 

zooplankton, r denote the growth rate of phytoplankton, K is the 

carrying capacity, μi is the ingestion rate for phytoplankton, β i is 

ratio of biomass consumed for self-production, d i is the mortality 

rate of zooplankton, ρ i denote the rate of toxic substance produced 

by phytoplankton and g i is the inhibitory effect of two competing 

zooplankton. 

We know 

˙ Z i < 0 when τi = 0 and βi − ρi − d i < 0 , we re- 

ject this situation by assuming βi − ρi − d i > 0 (i = 1 , 2) , 

From [2] , we obtain that equilibrium E ∗(P ∗, Z ∗
1 
, Z ∗

2 
) exist if 

h 3 ( 
d 1 α1 

β1 −ρ1 −d 1 
) > 0 , h 3 ( 

d 2 α2 
β2 −ρ2 −d 2 

) > 0 , where 

h 3 (P ) = r(1 − P 

K 

(α1 + P ) 2 (α2 + P ) 2 

− μ1 

g 1 
((β1 − ρ1 − d 1 ) P − d 1 α1 )(α2 + P ) 2 

− μ2 

g 2 
((β2 − ρ2 − d 2 ) P − d 2 α2 )(α1 + P ) 2 , 

if the h 3 ( P ) is monotone for P ∈ ( P 0 , P 1 ), the equilibrium E ∗ is 

unique, the definition of P 0 , P 1 is showed in [2] , all the discussion 

in this paper based on the existence and uniqueness of equilibrium 

E ∗, we should demonstrate the positivity and boundness of the 

solution, which is essential in reality. The positivity means that the 

population of plankton will exist for long time and the boundness 

means that the population could not increase for ever, they are 

limited by many factors, we select Holling II functional response 

to represent the grazing of zooplankton on the toxic phytoplank- 

ton and analysis the dynamic of two zooplankton-phytoplankton 

with two delays about 6 cases: (1) τ1 = τ2 = 0 , (2) τ1 > 0 , τ2 = 0 , 

(3) τ1 = 0 , τ2 > 0 , (4) τ1 = τ2 > 0 , (5) τ 1 ∈ (0, τ 10 ), τ 2 > 0, (6) τ 2 ∈ 

(0, τ 20 ), τ 1 > 0, similar to [8] , we discuss the Hopf bifurcation on 

case (5) by center manifold and normal form, all the analysis are 

demonstrated by simulations. 

This paper is organized as follows: the positivity and bound- 

ness of solution is discussed in Section 2 , the stability of positive 

equilibrium and existence of local Hopf bifurcation of system 

(1.3) is studied in Section 3 , some simulations are given to support 

our result in Section 4 , at last, we give conclusion in Section 5 . 

2. Positivity and boundness of solution 

For system (1.3) , we give the initial condition: 

P (θ ) = φ(θ ) ≥ 0 , Z i (θ ) = ψ i (θ ) ≥, 

θ ∈ [ −τ, 0] , φ(0) > 0 , ψ i (0) > 0 , (2.1) 

where τ = max (τ1 , τ2 ) , from the fundamental theory [10] , system 

(1.3) with condition (2.1) admit uniqueness and existence of 

solution on [0 , + ∞ ) , besides, we have 

Lemma 2.1. All the solution of system (1.3) with initial condition 

(2.1) are positive and bounded on [0 , + ∞ ) . 

Proof. Let ( P ( t ), Z 1 ( t ), Z 2 ( t )) be a solution of system (1.3) , we con- 

sider Z i ( t ) for t ∈ [0, τ ]. 

dZ i 
dt 

= 

βi P (t − τi ) Z(t − τi ) 

α + P (t − τi ) 
− ρi P (t) Z i (t) 

αi + P (t) 
− d i Z i − g i Z 

2 
i 

≥ −ρi P (t) Z i (t) 

αi + P (t) 
− d i Z − g i Z 

2 
i , 

since φ( θ ) ≥ 0, ψ i ( θ ) ≥ 0 for θ ∈ [ −τ, 0] we get 

Z i (t) ≥ ψ i (0) exp 

(∫ t 

0 

(
− ρi P (s ) 

αi + P (s ) 
− d i − g i Z i (s ) ds 

))
> 0 , t ∈ [0 , τ ] 

Thus, Z i ( t ) is positive for t ∈ [0, τ ], similarly 

P (t) = φ(0) exp 

(∫ t 

0 

(
r 

(
1 − P (s ) 

K 

)
− μ1 Z 1 (s ) 

α1 + P (s ) 
− μ2 Z 2 (s ) 

α2 + P (s ) 

)
ds 

)
> 0 , t ∈ [0 , τ ] 

so we could expand the result to [ τ, 2 τ ] , . . . , [ nτ, (n + 1) τ ] , n ∈ N. 

Thus P (t) > 0 , Z i (t) > 0 , i = 1 , 2 for t ≥ 0. 

From the first equation of (1.3) , we obtain 

˙ P ≤ rP (1 − P 
K ) , 

so lim sup t→∞ 

P (t) ≤ K, for ε > 0 sufficiently small, there 

exist sufficiently large T > 0 such that P (t) < K + ε for 

all t ≥ T , for Z i ( t ), d 
. = min (d 1 , d 2 ) , we define W (t) = 

P (t − τ1 ) + P (t − τ2 ) + 

μ1 
β1 

Z 1 (t) + 

μ2 
β2 

Z 2 (t) for t ≥ 0, Then 

˙ W = 

dP (t − τ1 ) 

dt 
+ 

dP (t − τ2 ) 

dt 
+ 

μ1 

β1 

dZ 1 
dt 

+ 

μ2 

β2 

dZ 2 
dt 

≤ rP (t − τ1 ) 

(
1 − P (t − τ1 ) 

K 

)
+ rP (t − τ2 ) 

(
1 − P (t − τ2 ) 

K 

)

− d 1 μ1 

β1 

Z 1 − d 2 μ2 

β2 

Z 2 

≤ −d 1 

(
P (t − τ1 ) + 

μ1 

β1 

Z 1 

)
+ P (t − τ1 ) 

(
d 1 + r − rP (t − τ1 ) 

K 

)

− d 2 

(
P (t − τ2 ) + 

μ2 

β2 

Z 2 

)
+ P (t − τ2 ) 

(
d 2 + r − rP (t − τ2 ) 

K 

)

= −dW + 

K 

4 r 
((d 1 + r) 2 + (d 2 + r) 2 ) , 

so by the comparison theory [12] , we obtain W (t) ≤
W (0) + 

K((d 1 + r) 2 +(d 2 + r) 2 ) 
4 dr 

. 

Thus we complete the proof. �

3. Hopf bifurcation 

Before our discussion, transfer the equilibrium to origin by 

x = P (t) − P ∗, y = Z 1 (t) − Z ∗
1 
, z = Z 2 (t) − Z ∗

2 
, system (1.3) became ⎧ ⎨ 

⎩ 

dx 
dt 

= a 11 x + a 12 + a 13 z + F 1 , 

dy 
dt 

= a 21 x + a 22 y + a 23 x (t − τ1 ) + a 24 y (t − τ1 ) + F 2 , 

dz 
d t 

= a 31 x + a 32 z + a 33 x (t − τ2 ) + a 34 z(t − τ2 ) + F 3 . 

(3.1) 

where 

a 11 = − rP ∗
K + 

μ1 P 
∗Z ∗

1 

(α1 + P ∗) 2 
+ 

μ2 P 
∗Z ∗

2 

(α2 + P ∗) 2 
, a 12 = − μ1 P 

∗
α1 + P ∗ , a 13 = − μ2 P 

∗
α2 + P ∗ , 

a 21 = − ρ1 α1 Z 
∗
1 

(α1 + P ∗) 2 
, a 22 = − ρ1 P 

∗
α1 + P ∗ − d 1 − 2 g 1 Z 

∗
1 , a 23 = 

β1 α1 Z 
∗
1 

(α1 + P ∗) 2 
, 

a 24 = 

β1 P 
∗

α1 + P ∗ , a 31 = − ρ2 α2 Z 
∗
2 

(α2 + P ∗) 2 
, a 32 = − ρ2 P 

∗
α2 + P ∗ − d 2 − 2 g 2 Z 

∗
2 
, 

a 33 = 

β2 α2 Z 
∗
2 

(α2 + P ∗) 2 
, a 34 = 

β2 P 
∗

α2 + P ∗ , 

F 1 = g ∗
1 
x 2 + g 2 xy + g 3 xz + g 4 x 

3 + g 5 x 
2 y + g 6 x 

2 z + hot, 

F 2 = h 1 x 
2 + h 2 y 

2 + h 3 x (t − τ1 ) 
2 + h 4 xy + h 5 x (t − τ1 ) y (t − τ1 ) + 

h 6 x 
3 + h 7 x (t − τ1 ) 

3 + h 8 x 
2 y + h 9 x (t − τ1 ) 

2 y (t − τ1 ) + hot, 

F 3 = k 1 x 
2 + k 2 z 

2 + k 3 x (t − τ2 ) 
2 + k 4 xz + k 5 x (t − τ2 ) z(t − τ2 ) + 

k 6 x 
3 + k 7 x (t − τ2 ) 

3 + k 8 x 
2 z + k 9 x (t − τ2 ) 

2 z(t − τ2 ) + hot, where 

g ∗
1 

= − r 
K + 

μ1 α1 Z 
∗
1 

(α1 + P ∗) 3 
+ 

μ2 α2 Z 
∗
2 

(α2 + P ∗) 3 
, g 2 = − μ1 α1 

(α1 + P ∗) 2 
, g 3 = − μ2 α2 

(α2 + P ∗) 2 
, 

g 4 = − μ1 α1 Z 
∗
1 

(α1 + P ∗) 4 
− μ2 α2 Z 

∗
2 

(α2 + P ∗) 4 
, g 5 = 

μ1 α1 

(α1 + P ∗) 3 
, g 6 = 

μ2 α2 

(α2 + P ∗) 3 
, 

h 1 = 

ρ1 α1 Z 
∗
1 

(α1 + P ∗) 3 
, h 2 = −g 1 , h 3 = − α1 β1 Z 

∗
1 

(α1 + P ∗) 3 
, h 4 = − α1 ρ1 

(α1 + P ∗) 3 
, h 5 = 

β1 α1 

(α1 + P ∗) 2 
, 

h 6 = − α1 ρ1 Z 
∗
1 

(α1 + P ∗) 4 
, h 7 = 

α1 β1 Z 
∗
1 

(α1 + P ∗) 4 
, h 8 = 

α1 ρ1 

(α1 + P ∗) 3 
, h 9 = − α1 β1 

(α1 + P ∗) 3 
, 
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