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a b s t r a c t 

In this paper, we analyze the conditions leading to the nonlinear supratransmission phenomenon in two 

different models: a modified fifth order Klein–Gordon system and a modified sine-Gordon system. The 

modified models considered here are those with mixed coupling, the pure linear coupling being as- 

sociated with a nonlinear coupling. Especially, we numerically quantify the influence of the nonlinear 

coupling coefficient on the threshold amplitude which triggers the nonlinear supratransmission phe- 

nomenon. Our main result shows that, in both models, when the nonlinear coupling coefficient increases, 

the threshold amplitude triggering the nonlinear supratransmission phenomenon decreases. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Contrary to linear media, it is possible to transmit energy in 

nonlinear propagation systems outside their linear frequency band. 

As an example, it has been shown recently that nonlinear split- 

ring resonator (SRRs) transmission lines may transmit significant 

power by means of nonlinearity-induced frequency bands [1] . On 

the other hand, it is also well known that, when a nonlinear and 

discrete transmission line is excited with a frequency in the gap, it 

may transmit energy if the input signal amplitude exceeds a partic- 

ular threshold. This phenomenon, called nonlinear supratransmis- 

sion, was introduced by Geniet and Léon [2,3] when they observed 

a sudden increase in amplitude of the signal transmitted in a non- 

linear chain excited with a frequency in the gap. Subsequently, sev- 

eral theoretical and/or numerical studies have also demonstrated 

the existence of this phenomenon in a wide number of systems. 

As an exemple, numerical simulations and theoretical studies have 

shown that the classical sine-Gordon model may transmit en- 

ergy in the gap via the nonlinear supratransmission phenomenon 

[4,5] and that its nonlinearity enables a bistable behavior [6] . Other 

studies on the classical sine-Gordon model have shown that noise 

can also contribute to produce nonlinear modes via the nonlinear 

supratransmission phenomenon [7] . The one dimensional case has 

been addressed, and an extension to a 2-dimensional (2D) system 

has been also reported [8] . These studies led to some applications, 

like the propagation of binary signals in semi-infinite mechani- 
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cal chains of coupled oscillators [9,10] , in the bounded β-Fermi–

Pasta–Ulam lattice [11] , and on the transmission of binary signals 

in the continuous Frenkel–Kontorova medium [12] . The study of 

nonlinear supratransmission was also conducted in many others 

systems like nonlinear transmission lines [13–15] , waveguide ar- 

rays [16–19] , Bragg media [20] , pendula chains [21] , optical lattices 

[22] , birefringent media with quadratic nonlinearity [23] , Joseph- 

son junctions [24–29] to cite but a few. All of these studies were 

made while considering only systems with pure linear coupling, 

but other ones were conducted on systems with mixed coupling 

[30–32] . However, these latest works have not shown the influ- 

ence of the nonlinear coupling on the nonlinear supratransmission 

phenomenon. In this paper, we propose to numerically study how 

the addition of the nonlinear coupling affects supratransmission in 

the fifth order Klein–Gordon system [3,33] and in the sine-Gordon 

medium. 

The paper is organized as follows. In the next section, we 

present the models. The following section is then devoted to the 

study of the fifth order Klein–Gordon system, in the classical case, 

that is without nonlinear coupling and in the case including an ad- 

ditive nonlinear coupling. Section 4 discusses the case of the sine- 

Gordon model including the nonlinear coupling and Section 5 con- 

cludes the paper. 

2. Models description 

We consider a network of N particles whose displacement U n 

for the n th particle obeys to : 
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where the first cell is sinusoidally driven by the excitation 

U 0 (t) = A sin (ωt) . 

The dissipation parameter γ is taken constant at any time for 

all oscillators constituting the nonlinear lattice and it will be set to 

0.01 in all our study. Moreover, we consider a network of N = 600 

particles. 

In Eq. (1) , for the Klein–Gordon system, the nonlinearity f ( U n ) 

obeys to 

f (U n ) = U n − U 

3 
n 

3! 
+ 

U 

5 
n 

5! 
, (2) 

while for the sine-Gordon model, the nonlinearity is defined by 

f (U n ) = sin (U n ) . (3) 

Note that, in both cases, in the linear approximation, the func- 

tion f ( U n ) reduces to 

f (U n ) = U n . (4) 

The theoretical expressions of the dispersion relation and 

damping can be deduced by considering the following profile in 

Eq. (1) 

U n (t) = U 0 e 
j(βn −ωt) + U 0 e 

− j(βn −ωt) , (5) 

where β is a complex wave number that can be written under the 

form 

β(ω) = k (ω) + jα(ω) . (6) 

In expression (6) , k corresponds to the wave number while α de- 

notes the damping. Substituting the linear plane wave defined by 

expression (5) in Eq. (1) with the linear approximation (4) leads 

to 

ω 
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2 ω 

2 
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+ cos (k ) cosh (α) 
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By identifying the real and imaginary parts of Eq. (7) , we obtain ⎧ ⎪ ⎨ 

⎪ ⎩ 

1 + 
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. (8) 

Restricting our study to the case of weak values of α (either α
→ 0), we can consider the following approximations cosh ( α) ≈ 1 

and sinh ( α) ≈ α, which leads to the theoretical expression of the 

dispersion relation: 

ω 

2 = ω 

2 
0 + 2 ω 

2 
L ( 1 − cos k ) , (9) 

where ω is the angular frequency of linear waves and k their 

wave number. The corresponding linear spectrum exhibits a band- 

pass behavior of bandwidth [ ω 0 ; ω c ] with a high cut-off frequency 

ω c = 

√ 

ω 

2 
0 

+ 4 ω 

2 
L 

as presented in Fig. 1 . 

By considering sinh ( α) � α in Eq. (8) and by using the disper- 

sion relation (9) , we also have the following theoretical expression 

of the damping coefficient α: 

α(ω ) = 

ω γ

2 ω 

2 
L 

sin 

[ 
arccos 

(
1 + 

ω 2 
0 
−ω 2 

2 ω 2 
L 

)] . (10) 

The damping profile is presented in Fig. 2 for the particular case 

where ω 

2 
0 

= 1 and ω 

2 
L 

= 1 . The solid line represents the theoreti- 

cal expression given in Eq. (10) and the symbols “x” are deduced 

by numerical simulation of the model (1) driven by the excitation 

Fig. 1. Dispersion relation profile of both Klein–Gordon and sine-Gordon models 

defined by Eq. (9) . Parameters: ω 

2 
0 = 1 , ω 

2 
L = 1 . 

Fig. 2. Damping coefficient α versus the angular frequency ω. The theoretical law 

(11) is plotted in solid line, while the crosses are deduced from numerical simula- 

tion of the model defined by Eq. (1) . Parameters : ω 

2 
0 = 1 , ω 

2 
L = 1 . 

U 0 (t) = A sin ωt . Indeed, for each frequency ω inside [ ω 0 ; ω c ], that 

is inside the system bandwidth, we have determined the maxi- 

mum value reached by U n ( t ) for each cell n . Next, to obtain the 

damping α( ω) corresponding to the angular frequency ω, we have 

considered the following decaying law 

max [ U n (t)] = Ae −αn . (11) 

The damping coefficient α was then identified by means of Eq. 

(11) with a least square method. The evolution of damping versus 

the angular frequency ω is presented in Fig. 2 , where the theo- 

retical law (11) matches the numerical predictions with a perfect 

agreement. 

When the system is driven with an excitation of weak ampli- 

tude in the gap ( ω < ω 0 ), the medium supports an evanescent 

wave whose profile was mathematically predicted by Geniet and 

Léon in the linear regime and in the absence of nonlinear coupling 

(ω 

2 
NL = 0) [3] . In this linear limit and for an angular frequency in- 

side the gap, the evolution of the cell n obeys to: 

U n (t) = A sin (ωt) exp (−λn ) . (12) 

In expression (12) , λ is determined considering that if ω < ω 0 , 

then the wave number k is imaginary, that is k = jλ. By substi- 

tuting k = jλ in the dispersion relation (9) , we obtain 

λ = arccosh 

(
1 + 

ω 

2 
0 − ω 

2 

2 ω 

2 
L 

)
. (13) 

To extend the validity of the theoretical evanescent profile 

(12) to the case where the nonlinear coupling is taken into ac- 

count, we have performed numerical simulations of the modi- 

fied sine-Gordon model (1) with the following Dirichlet conditions 

[7] : {
U 0 (t) = A sin (ωt) 
U n (0) = 0 

, ˙ U n (0) = Aω exp (−λn ) . (14) 

In this paper, all numerical simulations were performed by using 

a fourth order Runge Kutta algorithm with integration time step 

dt = 0 . 01 to solve (1) with the Dirichlet conditions (14) . First, for 

different nonlinear coupling values, we have compared the theo- 

retical evanescent profile (12) with the state of the modified sine- 

Gordon lattice obtained numerically at given time t , namely t = 30 . 
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