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a b s t r a c t 

As noise is omnipresent, real-world quantities measured by scientists and engineers are commonly ob- 

tained in the form of statistical distributions. In turn, perhaps the most compact representation of a 

given statistical distribution is via the mean-variance approach: the mean manifesting the distribution’s 

‘typical’ value, and the variance manifesting the magnitude of the distribution’s fluctuations about its 

mean. The mean-variance approach is based on an underlying Euclidean-geometry perspective. So very 

often real-world quantities of interest are non-negative sizes, and their measurements yield statistical 

size distributions. In this paper, and in the context of size distributions, we present an alternative to 

the Euclidean-based mean-variance approach: a mean-equality approach that is based on an underlying 

socioeconomic perspective. We establish two equality indices that score, on a unit-interval scale, the in- 

trinsic ‘egalitarianism’ of size distributions: (i) the poverty equality index which is particularly sensitive 

to the existence of very small “poor” sizes; (ii) the riches equality index which is particularly sensitive to 

the existence of very large “rich” sizes. These equality indices, their properties, their computation, their 

application, and their connections to the mean-variance approach – are explored and described compre- 

hensively. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Statistical distributions are ubiquitous. Indeed, in essentially ev- 

ery field of science and engineering, empirical real-world data 

is commonly communicated and presented using the quantitative 

language of Statistics . The first-step approximation of an empirical 

real-valued quantity is via its mean : the quantity’s “typical” value. 

The second-step approximation is via the quantity’s variance : the 

magnitude of the quantity’s fluctuations about its mean. 

A most vivid illustration of the mean-variance approach is the 

well-known bell curve, the density function of perhaps the most 

fundamental statistical distribution – the “normal” Gauss law. Re- 

call that the Gauss law emerges universally via the Central Limit 

Theorem [1] , and that it is the only statistical distribution that is 

characterized by its mean and variance. In the context of the Gauss 

law the mean represents the location of the bell-curve’s center, and 

the variance represents the bell-curve’s width, i.e. the “peakness”

of the curve about its center. 

The mean and the variance follow from a Euclidean-geometry 

perspective. Indeed, given a random real-valued quantity, and with 

regard to the Euclidean metric: the mean is the best deterministic 

approximation of the random quantity; the variance is the mean 

square distance of the random quantity from its best deterministic 
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approximation. Moreover, the quadratic structure of the Euclidean 

metric is induced to the variance, thus endowing the variance with 

handy mathematical properties. 

Often, real-valued quantities are non-negative sizes , e.g. count, 

length, area, volume, mass, energy, and duration. Size distributions 

are omnipresent across science and engineering, and are of great 

importance. The distributions of wealth in human societies consti- 

tute a particular example of size distributions and of their signif- 

icance [2–6] . In the context of the wealth distribution of a given 

society the abovementioned mean has a socioeconomic meaning: 

should the society be purely egalitarian, i.e. purely communist, the 

mean would represent the common wealth value of the society’s 

members. 

So, from a Euclidean perspective the mean manifests the best 

deterministic approximation. On the other hand, in the context of 

wealth distributions, and from a socioeconomic perspective, the 

mean manifests the state of pure communism . As noted above, in 

the Euclidean perspective the deviation from the best determinis- 

tic approximation is quantified by the variance. Analogously, in the 

socioeconomic perspective, measures of deviation from the state of 

pure communism will quantify the inequality of the wealth distri- 

bution under consideration. 

The main portal to socioeconomic inequality is facilitated by 

the notion of Lorenz curves [7–11] . In turn, the Lorenz curves give 

rise to the notion of inequality indices : numerical scores of inequal- 

ity that take values in the unit interval [12–16] . A zero inequality 

http://dx.doi.org/10.1016/j.chaos.2016.08.012 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2016.08.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.08.012&domain=pdf
mailto:iddo.eliazar@intel.com
mailto:eliazar@post.tau.ac.il
http://dx.doi.org/10.1016/j.chaos.2016.08.012


I. Eliazar / Chaos, Solitons and Fractals 92 (2016) 30–42 31 

score characterizes the state of pure communism, and the larger 

the score – the larger is the gap between the rich and poor of the 

wealth distribution under consideration. The most widely applied 

inequality index is the well-known Gini index [17–21] . 

While inequality is commonly introduced in the context of 

wealth distributions, it can be effectively applied in the contexts of 

size distributions at large. From an abstract mathematical perspec- 

tive it makes no difference if the size considered represents wealth 

or not. Indeed, any non-negative quantity can be conceptually per- 

ceived as “wealth”, and hence the notion of inequality indices can 

be applied to any size distribution of interest. The following refer- 

ences exemplify the application of the Gini index well beyond the 

realm of wealth distributions: [22–36] . 

In this paper we follow the line of thought described in 

the above paragraph: we consider general size distributions as 

“wealth” distributions, and analyze them from a socioeconomic 

perspective. Doing so we measure the equality – rather than the in- 

equality – of general size distributions, and present an alternative 

to the aforementioned Euclidean-based mean-variance approach: a 

socioeconomic-based mean-equality approach. 

Specifically, in this paper we establish two equality indices: the 

poverty index and the riches index . Both these indices take values in 

the unit interval, and yield a unit score if and only if the state of 

pure communism is attained – i.e. if and only if the size distribu- 

tion is deterministic, with all its sizes being equal. Also, the lower 

the scores of the two indices – the larger the rich-poor gap, i.e. the 

gap between the large “rich” sizes and the small “poor” sizes. 

As their names imply, the poverty and the riches indices set 

their focuses on the poor and on the rich, respectively. The poverty 

index assigns a zero score when extreme poverty is present –

loosely speaking, when the size distribution includes an “impov- 

erished” class of zero sizes. The riches index assigns a zero score 

when extreme riches is present – loosely speaking, when the size 

distribution includes an “oligarchic” class of large sizes. 

The aforementioned Gini index is a linear functional of Lorenz 

curves, and this linear structure renders the Gini index insensi- 

tive to neither extreme poverty nor extreme riches. On the other 

hand, the poverty and the riches indices are nonlinear functionals 

of Lorenz curves, and their nonlinear structure is key in enabling 

the detection of extreme poverty and extreme riches, respectively. 

Also, this nonlinear structure equips the poverty and the riches in- 

dices with a multiplicative feature that the Gini index does not ex- 

hibit. 

Researches and practitioners tackle an abundance of size distri- 

butions on an everyday basis. In the context of size distributions, 

the goal of this paper is to offer a socioeconomic-based mean- 

equality toolbox that is both alternative and parallel to the com- 

monly applied Euclidean-based mean-variance toolbox. To that end 

we construct the poverty and the riches indices step-by-step and 

in a fully self-contained fashion, analyze these indices comprehen- 

sively, and explore their properties in detail. In addition, illustra- 

tive examples and insightful discussions are intertwined through- 

out the manuscript. 

A note about notation : Throughout the manuscript E [ ·] denotes 

the operation of mathematical expectation. Namely, E [ Z ] is the 

mathematical expectation, i.e. the mean, of a real-valued random 

variable Z . 

2. Foundation 

Consider a population that is partitioned into n groups labeled 

i = 1 , . . . , n . The groups are non-empty and non-overlapping, and 

their union is the entire population. The proportion of group i , 

with respect to the entire population, is p i . Note that the propor- 

tions are positive and that they sum up to one; hence p = ( p i ) 
n 
i =1 

is a probability vector. The partitioning is general, and it can be 

determined by arbitrary factors. For example, the partitioning can 

be: (i) gender-based – grouping the population members accord- 

ing to their sex; (ii) age-based – grouping the population members 

into age segments; (iii) geography-based – grouping the population 

members according to their areas of residence; (iv) occupation- 

based – grouping the population members according to their pro- 

fessions; (v) income-based – grouping the population members ac- 

cording to their wages; etc. 

Here and hereinafter X denotes a random variable that repre- 

sents the wealth of a randomly sampled member of the popula- 

tion. Similarly, X i denotes a random variable that represents the 

wealth of a randomly sampled member of group i ( i = 1 , . . . , n ). 

The random variable X is considered to be non-negative valued, 

yet not identically zero ( Pr ( X = 0 ) < 1 ), and hence its mean is 

positive: μ := E [ X ] > 0 . Consequently, the random variables { X i } n i =1 

are non-negative valued, and so are their means: μi := E [ X i ] ≥ 0 

( i = 1 , . . . , n ). Conditional expectation implies that the connection 

between the population mean μ and the groups” means { μi } n i =1 is 

given by 

μ = 

n ∑ 

i =1 

p i μi . (1) 

Dividing both sides of Eq. (1) by the positive population mean 

μ we introduce the quantities q i = p i μi /μ ( i = 1 , . . . , n ). Note that 

these quantities are non-negative and sum up to one; hence q = 

( q i ) 
n 
i =1 is a probability vector. On the one hand, the probability vec- 

tor p manifests the partition’s population-distribution . On the other 

hand, the probability vector q manifests the partition’s wealth- 

distribution . Consequently, the divergence of the probability vector 

q from the probability vector p can be used to quantify the de- 

gree of the partition’s socioeconomic inequality . Introduced by Kull- 

back and Leibler, the most common measure of divergence of one 

probability vector from another is relative entropy [37,38] . Specifi- 

cally, the relative entropy of the probability vector q , with respect 

to probability vector p , is given by 

H(q | p ) = −
n ∑ 

i =1 

ln 

(
q i 
p i 

)
p i . (2) 

The Gibbs inequality asserts that the relative entropy is always non- 

negative, H(q | p ) ≥ 0 , and that it vanishes if and only if its two 

probability vectors coincide: H(q | p ) = 0 ⇔ q = p [39,40] . 

In this paper we set 

E(q | p ) := exp [ −H(q | p ) ] 

= 

n ∏ 

i =1 

(
q i 
p i 

)p i 

= 

n ∏ 

i =1 

(
μi 

μ

)p i 

= 

1 

μ

n ∏ 

i =1 

μp i 
i 

= 

∏ n 
i =1 μ

p i 
i ∑ n 

i =1 p i μi 

(3) 

to be the partition’s equality index . As its name suggests, the equal- 

ity index E(q | p ) is a quantitative score of the partition’s socioe- 

conomic equality. Indeed, the Gibbs inequality and Eq. (3) imply 

that the equality index E(q | p ) takes values in the unit interval, 

0 ≤ E(q | p ) ≤ 1 , and that it exhibits the three following properties: 

1. It attains its unit upper bound if and only if all the groups 

means coincide: E(q | p ) = 1 ⇔ μi = μ for all i = 1 , . . . , n . 

2. It attains its zero lower bound if and only if the mean of at least 

one group vanishes: E(q | p ) = 0 ⇔ μi = 0 for some i = 1 , . . . , n . 

3. It is invariant with respect to linear transformations of the 

measurement of wealth: applying on the means the linear 

transformation x �→ ax , where a is a positive parameter, does not 

affect E(q | p ) . 

Among all n -dimensional probability vectors p , the vector that 

maximizes entropy is the uniform one: p i = 1 /n ( i = 1 , . . . , n ) [41,42] . 
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