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This paper introduces a fractional order two-species cooperative systems with harvesting. By using the 

Routh-Hurwitz Conditions and the Lyapunov method, we provide several sufficient conditions to ensure 

the stability of the equilibriums for the system. Finally, a numerical example is presented to demonstrate 

the validity and feasibility of the theoretical result. 
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1. Introduction 

Population models appearing in various fields of mathemati- 

cal biology have been proposed and studied extensively with their 

universal and importance. Among them, mutualism which is the 

interaction of two species of organisms that benefits from each 

other plays an important role [1–9] . In [9] , the author investegated 

an cooperative models developed to describe facultative mutualism 

as follows: ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 1 (t) 

dt 
= r 1 x 1 

[ 
1 − x 1 

K 1 

+ b 12 
x 2 
K 1 

] 
− e 1 x 1 , 

dx 2 (t) 

dt 
= r 2 x 2 

[ 
1 − x 2 

K 2 

+ b 21 
x 1 
K 2 

] 
− e 2 x 2 , 

(1.1) 

where r i are the linear birth rates and the K i are the carrying ca- 

pacities which are all positive constants. The b 12 and b 21 measure 

the cooperative effect of x 2 on x 1 and x 1 on x 2 respectively which 

are all positive constants. The e i are harvesting efforts on respec- 

tive populations which are non-negative constants. In this paper 

the author showed two kinds of Lyapunov function to investigate 

the global stability for the system. Although a large amount of 

work has been done in studying dynamics on system (1.1) , it has 

been restricted to integer order differential equations. 

In recent years, many phenomena can be described successfully 

by fractional order differential equations. Fractional order differen- 
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tial equation generalizes the integer-order differential equation in 

which the order of derivatives can be any real or complex number. 

Because the conception of fraction-order may be more close to life 

than integer-order and allows greater degrees of freedom in the 

model, a large number of articles have been developed concerning 

the application of fractional order differential equations [10–24] . 

Motivated by the work above, in this paper we extend the sys- 

tem (1.1) to fractional order which becomes the following system: 

⎧ ⎨ 

⎩ 

c D 

α
t x 1 (t) = r 1 x 1 

[ 
1 − x 1 

K 1 

+ b 12 
x 2 
K 1 

] 
− e 1 x 1 , 

c D 

α
t x 2 (t) = r 2 x 2 

[ 
1 − x 2 

K 2 

+ b 21 
x 1 
K 2 

] 
− e 2 x 2 , 

(1.2) 

where all the parameters are as system (1.1) . 

The remainder of this paper is organized as follows. In 

Section 2 , we present basic definitions and some known results. In 

Section 3 , the local stability of equilibriums and uniform asymp- 

totic stability of positive equilibriums are showed. In Section 4 , a 

numerical example is provided to illustrate the effectiveness of the 

theoretical result. In the last section, a discussion of the paper is 

presented. 

2. Preliminaries and definitions 

There are some definitions for fractional derivative [14,15] , 

Maybe the most used definition is Caputo definition owning to the 

advantage of Caputo approach that the initial conditions for frac- 

tional differential equations take on the same form as those for 
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integer-order differentiation. In this paper, we also adopt the Ca- 

puto derivative. 

Definition 2.1. The fractional integral of order α ∈ R + of function 

f ( t ) for t > 0 is defined as 

I αt f (t) = 

∫ t 

0 

(t − s ) α−1 

�(α) 
f (s ) ds, (2.1) 

where �( ·) is the Euler gamma function. 

Definition 2.2. The Caputo fractional derivative of order α ∈ (n −
1 , n ] , n ∈ N of f ( t ) is defined as 

c D 

α
t f (t) = 

1 

�(n − α) 

∫ t 

0 

f (n ) ( s ) 

( t − s ) α+1 −n 
ds. (2.2) 

Remark 2.1. When 0 < α ≤ 1 in (2.2) , then the Caputo fractional 

derivative becomes 

c D 

α
t f (t) = 

1 

�(1 − α) 

∫ t 

0 

f ′ ( s ) 
( t − s ) α

ds. (2.3) 

Throughout this paper, we always assume that 0 < α ≤ 1. 

Lemma 2.3. ( [11] ) Consider the following commensurate fractional- 

order system. 

d αx 

dt α
= f (x ) , x (0) = x 0 , (2.4) 

with 0 < α ≤ 1 and x ∈ R n . The equilibrium points of system (2.4) are 

calculated by solving the following equation: f (x ) = 0 . These points 

are locally asymptotically stable if all eigenvalues λi of the Jacobian 

matrix J = 

∂ f 
∂x 

evaluated at the equilibrium points satisfy: | arg(λi ) | > 

απ
2 . 

Lemma 2.4. (Uniform Asymptotic Stability Theorem [12] ) Let x = 0 be 

an equilibrium point of system (2.4) and D ⊂ R n be a domain contain- 

ing x = 0 . Let L ( t, x ): [0, ∞ ) × D → R be a continuously differentiable 

function such that 

W 1 (x ) ≤ L (t , x (t )) ≤ W 2 (x ) , (2.5) 

c D 

α
t L (t, x (t)) ≤ −W 3 (x ) , (2.6) 

∀ t ≥ 0, ∀ ∈ D , 0 < α ≤ 1, where W 1 ( x ), W 2 ( x ) and W 3 ( x ) are contin- 

uous positive definite functions on D. Then x = 0 is uniformly asymp- 

totically stable. 

Remark 2.2. When x = x ∗ is the equilibrium point of system 

(2.4) and satisfies the conditions of Lemma 2.4 , then x = x ∗ is uni- 

formly asymptotically stable. 

Proof. Let x ∗ � = 0 be the equilibrium of system (2.4) and y = x − x ∗. 
The αth order derivative of y is given by 

c D 

α
t y = 

c D 

α
t (x − x ∗) = f (x ) = f (y + x ∗) � g(y ) , 

where g(0) = 0 and in the new variable y , the system 

c D 

α
t y = g(y ) 

has the equilibrium point at the origin. Therefore, from Lemma 2.4 , 

we know that y = 0 is uniformly asymptotically stable, which 

means x = x ∗ is uniformly asymptotically stable. �

Lemma 2.5. ( [13] ) Let x (t) ∈ R + be a continuous and derivable func- 

tion. Then for any time instant t ≥ 0 

c D 

α
t 

[
x (t) − x ∗ − x ∗ ln 

x (t) 

x ∗

]
≤

(
1 − x ∗

x (t) 

)c 

D 

α
t x (t) , (2.7) 

where x ∗ ∈ R + , α ∈ (0 , 1] . 

3. Equilibrium points and stability 

In order to evaluate the equilibrium points of system (1.2) , let 

c D 

α
t x 1 (t) = 0 , c D 

α
t x 2 (t) = 0 , 

that is ⎧ ⎨ 

⎩ 

r 1 x 1 

[ 
1 − x 1 

K 1 

+ b 12 
x 2 
K 1 

] 
− e 1 x 1 = 0 , 

r 2 x 2 

[ 
1 − x 2 

K 2 

+ b 21 
x 1 
K 2 

] 
− e 2 x 2 = 0 . 

(3.1) 

We can obtain that system (1.2) has four equilibriums as follow: 

• E 0 (0, 0) which is the trivial solution of system (1.2) . 

• E 1 ( K 1 A 1 , 0) if 0 ≤ e 1 < r 1 ; 

• E 2 (0, K 2 A 2 ) if 0 ≤ e 2 < r 2 ; 

• E 3 (x ∗
1 
, x ∗

2 
) if b 12 b 21 < 1, 0 ≤ e 1 < r 1 and 0 ≤ e 2 < r 2 ; 

where x ∗
1 

= 

A 1 K 1 + b 12 A 2 K 2 
1 −b 12 b 21 

, x ∗
2 

= 

A 2 K 2 + b 21 A 1 K 1 
1 −b 12 b 21 

, A 1 = 1 − e 1 
r 1 

, A 2 = 1 − e 2 
r 2 

. 

In the following section we evaluate the local asymptotically 

stability of the four equilibriums by Jacobian matrix. Firstly, let us 

discuss E 0 . 

Theorem 3.1. If r 1 < e 1 , r 2 < e 2 , then the trivial solution E 0 of sys- 

tem (1.2) is locally asymptotically stable. 

Proof. The Jacobian matrix J ( E 0 ) for system (1.2) is 

J(E 0 ) = 

(
r 1 − e 1 0 

0 r 2 − e 2 

)
(3.2) 

It is easy to know that with the conditions of Theorem 3.1 the 

eigenvalues corresponding to the equilibrium E 0 are 

λ1 = r 1 − e 1 < 0 , λ2 = r 2 − e 2 < 0 . 

which implied | arg(λ1 ) | = | arg(λ2 ) | = π. Hence by Lemma 2.3 , we 

know that E 0 is locally asymptotically stable. �

Theorem 3.2. If e 1 < r 1 and r 2 < e 2 , then the equilibrium E 1 of sys- 

tem (1.2) is locally asymptotically stable. Similarly, if r 1 < e 1 and e 2 < 

r 2 , the equilibrium E 2 of system (1.2) is locally asymptotically stable. 

Proof. We now discuss the locally asymptotic stability of E 1 . The 

Jacobian matrix J ( E 1 ) is given as: 

J(E 1 ) = 

⎛ 

⎝ 

r 1 (1 − 2 A 1 ) − e 1 r 1 b 12 A 1 

0 r 2 

(
1 − b 12 K 1 A 1 

K 2 

)
− e 2 

⎞ 

⎠ (3.3) 

Hence the characteristic equation of J ( E 1 ) is 

Q(λ) = det(λE − J(E 1 )) 

= (λ − r 1 (1 − 2 A 1 ) + e 1 ) 

(
λ − r 2 

(
1 − b 12 K 1 A 1 

K 2 

)
+ e 2 

)

= 0 

The eigenvalues corresponding to the equilibrium E 1 are 

λ3 = r 1 (1 − 2 A 1 ) − e 1 = e 1 − r 1 

λ4 = r 2 

(
1 − b 12 K 1 A 1 

K 2 

)
− e 2 

If e 1 < r 1 , it is easy to know that λ3 < 0 and A 1 = 1 − e 1 
r 1 

> 0 

which implies 
b 12 K 1 A 1 

K 2 
> 0 . Therefore, with the conditions e 2 < 

r 2 , we can obtain λ4 = r 2 (1 − b 12 K 1 A 1 
K 2 

) − e 2 < r 2 − e 2 < 0 which im- 

plies the equilibrium E 1 of the system is locally asymptotically sta- 

ble. The similar result can be get about E 2 . �
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