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1. Introduction 

Hopf bifurcation has been investigated intensively because it is 

closely related to 16th problem of Hilbert. For planar ordinary dif- 

ferential equations, there were many good results for continuous 

systems. For example, one of the best-known results was M(2) = 3 

[1] for a planar system with an elementary critical point. Here, 

M ( n ) denotes the maximal number of small-amplitude limit cycles 

around a singular point with n being the degree of polynomials in 

the vector field. When n = 3 , the authors constructed two differ- 

ent cubic systems to show there exist 9 limit cycles for cubic sys- 

tems in [2] and [3] . Recently, Yu and Tian showed that there could 

be twelve limit cycles around a singular point in a planar cubic- 

degree polynomial system [4] . When a critical point is degenerate, 

its center problem has also been investigated by many authors, see 

[5–10] . There were also many results about the bifurcation of limit 

cycles [11–14] , for more detail, see [15,16] . But for general system 

with a degenerate critical points it is still a hard work to solve 

its center problem and to determine the number of limit cycles. A 

special system with total degenerate critical point was investigated 

by Liu etc. in [17] . 

For non-smooth system, a quadratic switching system with nine 

limit cycles was constructed in [18] by Chen Xingwu et al. In 
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[19] Llibre et al. studied the maximum number of limit cycles that 

bifurcate from the periodic solutions of the family of isochronous 

cubic polynomial centers. Llibre and Mereu [20] also studied the 

maximum number of limit cycles which can bifurcate from the pe- 

riodic orbits of the isochronous centers of discontinuous quadratic 

polynomial differential systems. The number of limit cycles bifur- 

cated from the periodic orbits was discussed in [21] . Recently, Tian 

et al. constructed a Bautin switching system with ten limit cycles 

in [22] . 

In this paper we are concerned with the appearance of one 

limit cycle from a degenerate singular point for switching bi- 

dimensional systems. This phenomenon can be considered as a 

kind of generalized Hopf bifurcation. In this paper we study the 

following class of discontinuous planar systems of ordinary differ- 

ential equations 

dx 

dt 
= −y (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

F + 
k 

(x, y ) , 

dy 

dt 
= x (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

G 

+ 
k 
(x, y ) , y > 0 , 

dx 

dt 
= −y (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

F −
k 

(x, y ) , 

dy 

dt 
= x (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

G 

−
k 
(x, y ) . y < 0 . (1.1) 
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The aim of this paper is to establish a method to compute 

Lyapunov constant at a degenerate singular point for switching 

bi-dimensional systems (1.1) . With the help of Mathematica, the 

method could be used directly to compute Lyapunov constant for 

some systems with a degenerate singular point in many practical 

problems. 

The rest of the paper is organized as follows. In the next sec- 

tion, a method to compute Lyapunov constant at a total degenerate 

critical point of switching system is given. As an example, a quartic 

switching system with a degenerate critical point is investigated in 

order to illustrate the efficiency of our method in Section 3 . 

2. Lyapunov constant of a switching system with a degenerate 

singular point 

In this section, we will give a method to compute Lyapunov 

constant of a switching system with a degenerate singular point. 

Planar polynomial systems with degenerate critical points could be 

written as 

dx 

dt 
= 

∞ ∑ 

2 n +1 

X k (x, y ) , 

dy 

dt 
= 

∞ ∑ 

2 n +1 

Y k (x, y ) , (2.1) 

where n is a positive integer. When xY 2 n +1 (x, y ) − yX 2 n +1 (x, y ) does 

not change its sign, the origin is a center or a focus. Generally, sup- 

pose that 

xY 2 n +1 (x, y ) − yX 2 n +1 (x, y ) ≥ d(x 2 + y 2 ) n +1 . 

System (2.1) can be become 

dr 

dt 
= r 2 n +1 

∞ ∑ 

k =0 

ϕ 2 n +2+ k (θ ) r k , 

dθ

dt 
= r 2 n 

∞ ∑ 

k =0 

ψ 2 n +2+ k (θ ) r k , (2.2) 

by transformation 

x = r cos θ, y = r sin θ, (2.3) 

where ϕ k ( θ ), ψ k ( θ ) are polynomials of cos θ and sin θ , given by 

ϕ 2 n +2 (θ ) = cos θX 2 n +1 ( cos θ, sin θ ) + sin θY 2 n +1 (cosθ, sinθ ) , 

ψ 2 n +2 (θ ) = cos θY 2 n +1 ( cos θ, sin θ ) − sin θX 2 n +1 ( cos θ, sin θ ) . 

Eq. (2.2) is equivalent to 

dr 

dθ
= r 

ϕ 2 n +2 + 

∑ ∞ 

k =1 ϕ 2 n +2+ k (θ ) r k 

ψ 2 n +2 + 

∑ ∞ 

k =1 ψ 2 n +2+ k (θ ) r k 
(2.4) 

which is a special case of equation 

dr 

dθ
= r 

∞ ∑ 

k =1 

R k (θ ) r k , (2.5) 

where R k ( θ ) is continuous and differentiable, and R k (θ + π) = 

(−1) k R k (θ ) . 

By the methods of small parameters of Poincaré, the solutions 

of (2.5) could be written as 

r = 

˜ r (θ, h ) = 

∞ ∑ 

k =1 

v k (θ ) h 

k 

Where v 1 (0) = 1 , v k (0) = 0 , ∀ k ≥ 2 . 

Submitting above solution into (2.5) , 

v ′ 1 (θ ) = R 0 (θ ) v 1 (θ ) , 

v ′ 2 (θ ) = R 0 (θ ) v 2 (θ ) + R 1 (θ ) v 1 (θ ) 2 , 

· · · · · · , 

v ′ m 

(θ ) = R 0 (θ )�1 ,m 

(θ ) + R 1 (θ )�2 ,m 

(θ ) + · · · + R m −1 (θ )�m,m 

(θ ) , 

· · · · · · , (2.6) 

v k ( θ ) could be get one by one. 

v 1 (θ ) = e 
∮ ϑ 

0 R 0 (ϕ) dϕ , 

· · · · · · , 

v m 

(θ ) = v 1 (θ ) 

∮ ϑ 

0 

R 1 (ϕ )�2 ,m 

(ϕ ) + · · · + R m −1 (ϕ )�m,m 

(ϕ ) 

v ( ϕ) 
dϕ, 

· · · · · · , (2.7) 

for more detail, see [8] . 

For system (2.1) , it is easy to obtain R 0 (θ ) = 

ϕ 2 n +2 (θ ) 

ψ 2 n +2 (θ ) 
, but it is 

difficult for further study. For simplify, the following systems 

dx 

dt 
= (δx − y )(x 2 + y 2 ) n + 

∞ ∑ 

2 n +2 

X k (x, y ) , 

dy 

dt 
= (x + δy )(x 2 + y 2 ) n + 

∞ ∑ 

2 n +2 

Y k (x, y ) . (2.8) 

will be studied in this paper, and we get 

ϕ 2 n +2 (θ ) = δ, ψ 2 n +2 (θ ) = 1 . 

When δ = 0 , Eq. (2.4) yields that 

dr 

dθ
= r 

∑ ∞ 

k =1 ϕ 2 n +2+ k (θ ) r k 

1 + 

∑ ∞ 

k =1 ψ 2 n +2+ k (θ ) r k 
. (2.9) 

Furthermore, the successive function could be defined as follow- 

ing 

	(h ) = 

˜ r (2 π, h ) − h. 

For switching system with a degenerate singular point, the clas- 

sical method could not be used, we must find some new meth- 

ods to solve this problems. The expression of (1.1) in polar coordi- 

nates 

(R 

+ (r, θ ) , 1 + 
+ (r, θ )) θ ∈ [0 , π ] , 

(R 

−(r, θ ) , 1 + 
−(r, θ )) θ ∈ [ π, 2 π ] . (2.10) 

Similarly, we could define half-return map as in [23] . The 

Lemma 2.1 in [23] yields that we could compute the positive half- 

return map of 

dx 

dt 
= −y (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

F + 
k 

(x, y ) , 

dy 

dt 
= x (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

G 

+ 
k 
(x, y ) , (2.11) 

and 

dx 

dt 
= −y (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

F −
k 

(x, y ) , 

dy 

dt 
= x (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

G 

−
k 
(x, y ) . (2.12) 

The method could be briefly introduced by following figures. First 

of all, for the upper phase of system, 

dx 

dt 
= −y (x 2 + y 2 ) n + 

∞ ∑ 

k =2 n +2 

F + 
k 

(x, y ) , 
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