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a b s t r a c t 

In this paper, a sandwiched buckled beam with axial compressive force under Gaussian white noise is 

considered as a piezoelectric energy harvester. A stochastic averaging method is proposed to analyt- 

ically predict the system’s response, the stability and the estimation of system’s reliability. By using 

the generalized harmonic transformation, the Itô differential equations with respect to the mechanical 

and electrical amplitude are derived through this technique. From these differential equations, we con- 

struct the Fokker–Plank–Kolmogorov equation for the electrical and mechanical subsystem where the 

solution of each equation in the stationary state is a probability density. The mean first passage time 

( MFPT ) is numerically provided in order to study the attractor stability(stable equilibrium point observed 

in the effective potential) which give rise to the noise-enhanced stability( NES ) phenomenon. The mean 

square response and voltage are obtained for different white noise intensities and others system param- 

eters. The effects of linear damping and noise intensity on the mean square voltage are investigated. 

We notice that harvested energy can be enhanced by suitable choice of noise intensity and others sys- 

tem parameters. In additional, by combining the random signal with harmonic excitation, the stochas- 

tic resonance( SR ) phenomenon is observed via the mean residence time( TMR ) which give rise to the 

large amplitude of vibrations and consequently, an optimization of harvested energy. The agreements 

between the analytical method and those obtained numerically validate the effectiveness of analytical 

investigations. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The fluctuating quantities considered as excitations in many 

mechanical systems cannot always be adequately modeled by de- 

terministic time functions. In fact, there are several natural phe- 

nomena that vary in a random manner due to the effect of many 

unknown factors, that fluctuate randomly over a wide band of fre- 

quencies and have to be considered as stochastic functions of time, 

defined only in probabilistic terms [1] . Dynamic systems in such 

environments are subject to stochastic excitations. Then, in order 

to examine their response and stability, a probabilistic approach 

employing the theory of stochastic bifurcation is essential. If a 

system could change from one equilibrium state to another, even 

small fluctuations of parameters can have important effects. Such 

effects, when happening in the presence of small stochastic exci- 
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tations are called stochastic bifurcation. Stochastic bifurcation is a 

very interesting nonlinear phenomenon and its phenomenological 

aspect, called p-bifurcation has been intensively studied since 1963 

[2–4] , analytically and numerically in many systems [5] . For safety, 

reliability and economic reasons, the nonlinearities of many dy- 

namic energy harvesting systems under environmental and other 

forces that are treated as random disturbances must be taken into 

account in the design procedures [6] . Due to the fact that the influ- 

ence of stochastic bifurcation becomes crucial in the choices made 

by the system in the course of its evolution between the numerous 

basins of attraction, or dissipative structures, to which bifurcations 

give rise [1] , its study in the field of energy harvesting could give 

rise to a better harvesters understanding and control. A particu- 

larly simple demonstration of this feature can be achieved by find- 

ing the so-called probability structure of system’s response based 

on the Fokker–Plank–Kolmogorov equation (FPK) [7] . 

Many monographs and reviews have been published to present 

the state of recent research in energy harvesting technologies [8] , 

piezoelectric energy harvesting [9] , vibration energy harvesting via 

bistable systems [10] , the role of nonlinearities in vibratory energy 
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harvesting [11] . In the latter [11] , authors reported that contrary 

to one’s intuition, the performance metrics of nonlinear energy 

harvesting from vibratory source, are much easier to define when 

the excitation is random in nature, and that in such case, the useful 

statistical averages of the input and output can be easily defined. 

Many recent researches have then been focused on the experimen- 

tal and theoretical analysis of different size devices used to har- 

vest energy from ambient random vibrations. Jin et al. [12] found 

a Semi-analytical solution of random response for nonlinear vibra- 

tion energy harvesters; the energy-dependent frequency have been 

obtained through an averaging process. Zhao et al. [13] studied the 

deterministic and band-limited stochastic energy harvesting from 

uniaxial excitation of a multilayer piezoelectric stack; they found 

that a quadratic relation between maximum power and pressure 

is observed for bandlimited stochastic excitation. Borowiec et al. 

[14] , studied the effect of noise on energy harvesting in a beam 

with stopper. They showed how the noise component of the exci- 

tation influences the stability of the solution. The idea of associa- 

tion of two piezoelectric harvesters to produce more efficient elec- 

tric power generation, considering the combination of random and 

stochastic excitations have been studied by Litak [15] . He found a 

substantial effect of noise on the system dynamics and power gen- 

eration. 

Although as now, energy harvesting from nonlinear oscillators 

subjected to random excitation has been the subject of investiga- 

tion by a number of researchers [16–19] , the study of stochastic p- 

bifurcation in harvester models just started. Recently Kumar et al. 

[7] , demonstrated the agreement between their results from the 

Fokker–Planck approach and Monte Carlo simulation; and a good 

agreement when compared their simulation with analytic results 

obtained by Daqaq [20,21] . 

A particular interest here is the work of Cottone et al. [22] , 

where a detailed study of a piezoelectric buckled beam for ran- 

dom vibration energy harvesting was conducted. In the preceding 

mentioned work, the authors noticed that nonlinear bistable con- 

figuration of the oscillator induced by buckling phenomenon, has 

been proven to show higher global performances when excited by 

random vibrations, with power gains up to more than a factor of 

ten compared to the unbuckled state. 

Among the analytical methods known in the literature for solv- 

ing nonlinear dynamical systems who have submitted to a random 

excitation and nonlinear damping, stochastic averaging method 

[23] is a powerful approximation technique for prediction re- 

sponse, stability and estimation of reliability of linear and nonlin- 

ear oscillators. This technique has been extensively used in theo- 

retical investigation and engineering application of random vibra- 

tion. The success of this technique is mainly due in the fact that: 

the motion equations of system are more simplified and the di- 

mensions of the equation are often reduced while the essential be- 

havior of the system is retained. 

The primary focus of the current work consists in analyzing the 

model of Cottone et al. [22] using a probabilistic approach. To that 

end, we analyze the model equations using a stochastic averaging 

procedure through Ito’s formulation. We also analyze the system 

using Monte Carlo simulations, thus allowing the relative compar- 

ison between numerical and analytical stationary probability den- 

sity of the output voltage and the escape time that give a view 

on the stability of the harvester during its functioning. The result 

of our analysis gives an insight when trying to make predictions 

about device performance. We first present the basic model of our 

consideration by giving the description and mathematical model- 

ing of the system. Section 3 presents results from analytic exami- 

nations from which we derive the stationary probabilistic response 

of the system and the numerical scheme used for simulations. In 

Section 4 , we present numerical simulation we have conducted on 

our systems, followed by a conclusion. 

2. Description of the system with the model equation 

The mechanical part of energy scavenger of the present investi- 

gation showed in Fig. 1 was first studied by Cottone et al. [22] . The 

kinetic energy of system is defined as: 
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where L and L p are respectively the length of the substrate and of 

each piezoelectric layer, w ( x, t ) is the mid-plan deflection along z 

axis, ρs and ρp represents the substrate and piezoelectric materials 

density, A s and A p the cross section of the substrate and piezoelec- 

tric materials respectively, M 0 is the mass added at medium of the 

beam to improve its dynamic vibratory. With the external forces, 

the electric charges generated by a parallel bimorph is twice the 

value generated by a series bimorph [22] . However the generated 

electric voltage in the parallel bimorph is half the value produced 

by a series bimorph, since the capacitance of the parallel bimorph 

is four times that of the series bimorph; but in actuation scheme, 

since the dielectric capacitance in the parallel case is four times 

that in the series case, power consumption, is the same in both 

cases [23] . Yabin et al. [24] have also theoretically and experimen- 

tally shown that the maximum power output and efficiency is in- 

dependent of the electrical connection; but can be chosen depend- 

ing on the value of the load resistance. In this manuscript since 

considering the series configuration give rise to a coupling scheme 

that render the analytical probability densities of mechanical de- 

flexion and electrical voltage analytically untractable directly, we 

adopt the parallel configuration. The piezoceramic layers are as- 

sumed to be identical, voltage across the electrodes of each piezo- 

ceramic layer is v ( t ). It is important to add that e zx has the same 

sign at the top and bottom piezoceramic layers. The instantaneous 

electric fields are in the opposite directions (i.e., E u z = − v (t) 
h p 

at the 

top layer and E l z = 

v (t) 
h p 

at the bottom layer). The total potential en- 

ergy of system is defined as [22] : 
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where w e is the work done by the external compressive force P 

applied at the movable clamp. The parameters A, B, D, N p , M p and 

w e are defined as 

A = 2 b p E p h p + b s E s h s ; B = 0 ; N p = 0 (3) 
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d b represents the contraction length from side pressure corre- 

sponding to the critical load P cr . The lagrangian function of the 

buckled piezoelectric beam is defined by: 

£ = K + T e − (E p + T m 

) (6) 
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