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a b s t r a c t 

We develop a theoretical model of anomalous transport with polymerization-reaction dynamics. We are 

motivated by the experimental problem of actin polymerization occurring in a microfluidic device with a 

comb-like geometry. Depending on the concentration of reagents, two limiting regimes for the propaga- 

tion of reaction are recovered: the failure of the reaction front propagation and a finite speed of the reac- 

tion front corresponding to the Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) at the long time asymp- 

totic regime. To predict the relevance of these regimes we obtain an explicit expression for the transient 

time as a function of geometry and parameters of the experimental setup. Explicit analytical expressions 

of the reaction front velocity are obtained as functions of the experimental setup. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Microfluidics is an indispensable tool of modern bio-physical 

research. It allows to perform complex single-cell experiments 

with an immense throughput and high level of control. A flexible 

design allows for custom geometries and control of flows and 

chemical reactions. Recently, to probe the dynamics of actin 

polymerization, as well as to use the geometry of microfluidic 

device having the main supply channel with numerous identical 

side channels or chambers of different shapes, the following 

experimental setup, shown in Fig. 1 , has been suggested [1,2] . The 

main channel serves to deliver and fill the side chambers with 

reagents where the corresponding reactions can be observed. The 

flow in the main channel and diffusion in the side-channels are 

dominating means of transport in such devices. Remarkably, the 

process of diffusion in this particular geometry was extensively 

studied in the context of anomalous diffusion. It is known as a 

comb model [3–5] and it was demonstrated that the transport of 

particles along the main channel (called backbone in the model) 

can become subdiffusive when the particles get trapped by diffus- 

ing into the side channels. Until recently it was mostly an abstract 

model, which was, however, extremely useful in understanding 

the principles of anomalous subdiffusive transport. In particular, 

the comb model was introduced for understanding the anomalous 
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transport in percolating clusters [3,4] and it was considered as 

a toy model for a porous medium used for exploration of low 

dimensional percolation clusters [3,6] . It is a particular example 

of a non-Markovian phenomenon, which was explained within 

the framework of continuous time random walks [4,7,8] . Nowa- 

days, comb-like models are widely used to describe different 

experimental applications like the transport in low-dimensional 

composites [9] , the transport of calcium in spiny dendrites 

[10–12] . They also play an important role in developing the ef- 

fective comb-shaped configuration of antennas [13] and modeling 

and simulating flows in the cardiovascular and ventilatory systems, 

related to techniques of virtual physiology [14] . 

The experimental setup on actin polymerization [1,15] is the 

direct implementation of the comb model, where the effects of 

complex diffusion should have a substantial effect on the observed 

phenomena. Interestingly, the comb structure not only leads to an 

anomaly in transport but also to a very remarkable effects on the 

propagation of chemical reactions [12] . 

The goal of this paper is to combine the consideration of 

anomalous transport and reaction dynamics to provide the the- 

oretical grounds for the corresponding experimental efforts. Our 

analytical results on reaction propagation can help to guide the de- 

sign of microfluidic devices but also can lead to real experimental 

tests of anomalous diffusion and reaction dynamics. For the reac- 

tion of polymerization, depending on the concentration of reagents 

we can recover such remarkable phenomena as the failure of the 

reaction front propagation [16,17] or a finite speed, which eventu- 

ally leads to a Fisher-Kolmogorov-Petrovskii-Piscounov (FKPP) long 
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Fig. 1. (Color online) Optical micrograph of a segment of the microfluidics comb- 

like structures (on top). On bottom: microfluidic micrographs of fluorescently- 

labeled, polymerized actin filaments in a comb-like structure. 

time asymptotic regime [18,19] . In the finite comb geometry of the 

experimental setup, these two processes correspond to different 

time scales. While the FKPP is a long time asymptotic regime, the 

reaction front propagation at subdiffusion is a transient process 

and takes place on the intermediate asymptotic times. A rigorous 

derivation of the governing equations allowed us to calculate the 

characteristic time scale separating these regimes explicitly. This 

time scale is determined by the geometry of the microfluidic 

device and be used to tune the regimes of diffusion and reactions 

in experiments. 

1.1. Experimental setup 

To study the dynamics of actin polymerization in diffusion 

controlled comb-like structures, we refer to a multi-height mi- 

crofluidic device [1] . The microfluidic system consists of a main 

channel with a width h 1 = 5 μm, connected with comb-like 

structures that are smaller in width h 2 = 0 . 5 μm. Since the height 

of the main channel is ten-fold larger than that of the comb-like 

structures, a diffusion interface between the main, advective 

channel and the comb-like structure is generated due to the large 

hydraulic resistance of the connecting structures. Therefore, it is 

possible to add a solution of polymerization-inducing KCl to a 

solution of monomeric fluorescently labeled actin, including ATP 

necessary for in vitro polymerization, through the main channel, 

whereby KCl will diffuse into the comb-like structure and induce 

the polymerization of actin monomers into filaments. Similarly, 

magnesium (Mg 2+ ) can be used to induce the assembly of actin fil- 

aments into fibers. In what follows we will consider a very general 

reaction scheme referring to magnesium or KCl as an inducer, and 

the reaction itself as a reaction of polymerization. In experiments, 

the design of the side chambers can be varied and they can, for ex- 

ample, have circular or rectangular shapes. These shapes can also 

be incorporated into the analytical approach we develop below. 

2. Mapping of the Laplace operator on a comb equation 

Mapping the Laplace operators, acting in a three dimensional 

continuous-discrete geometry, as in Fig. 1 , on a continuous two 

dimensional comb model equation, is related to averaging in the 

xyz -space [20–22] over some characteristic volume. 

Anomalous diffusion of the inducer on the comb is described 

by the two dimensional probability distribution function (PDF) 

P ( x, y, t ), and a special condition is that the displacement in the x 

direction is only possible along the structure axis ( x -axis at y = 0 ). 

Therefore, this two dimensional diffusion is determined by the 

diagonal components of a diffusion tensor, where D x (y ) = D x δ(y ) 

and D y are the diffusion coefficients in the x and y directions, cor- 

respondingly. In this case, the process of mapping of the Laplace 

operator on the comb model corresponds to establishing relations 

between the geometry parameters of geometrical constraint for 

the Laplace operator and the transport constants D x and D y . 

In reality, we have the Laplace operator, which acts on 

the distribution function in a bulk of the main channel 

P (x, y, z) = P b (x, y, z) and in fingers (side channels, where re- 

actions take place) P (x, y, z) = P f (x, y, z) . Therefore, the following 

algorithm of mapping can be suggested. In the bulk of an infinite 

length along the x coordinate and yz surface with a cross-section 

a × a , one has for the Laplace operator 

D �P b (x, y, z) = D (∂ 2 x + ∂ 2 y + ∂ 2 z ) P (x, y, z) 

with the diffusivity of the inducer D and boundary conditions for 

P (x, y, z) = P b (x, y, z) 

∂ z P | z= −a/ 2 = ∂ z P | z= a/ 2 = ∂ y P | y = −a/ 2 = ∂ y P | y = a/ 2 = 0 . 

Integration over z leads to the disappearance of the z component 

of the Laplace operator due to the boundary condition. For the 

PDF, one obtains ∫ a/ 2 

−a/ 2 

P b (x, y, z) dz ≈ aP b (x, y, 0) , 

where we used the middle point theorem. Integration over y in 

the bulk yields zero except those y regions where the bulk is 

connected with the fingers. Plunging the fingers inside the bulk, 

one arrives at the dynamics along the backbone which is at y = 0 . 

Note, that the process of “plunging” mathematically corresponds 

to use of the middle point theorem. Therefore, we have for the 

bulk diffusion at arbitrary x 

1 

a 3 

∫ a/ 2 

−a/ 2 

d xd yd z�P b (x, y, z) ≈ D∂ 2 x P (x, y = 0 , z = 0) 

= Dδ(y/a ) ∂ 2 x P (x, y ) . (2.1) 

Here we disregarded the z coordinate in the distribution function 

P (x, y, z = 0) ≡ P (x, y ) . 

Now we consider fingers, which have length h and their xz 

cross-section is b × b . It is worth noting that to work with the 

symmetrical PDF, we are mapping the Laplace operator on a 

two-sided symmetrical comb model that is practically, reflected 

in a choice of the symmetric boundary conditions at y = ±h . The 

Laplace operator with diffusivity d inside the fingers reads 

d�P f (x, y, z) = d(∂ 2 x + ∂ 2 y + ∂ 2 z ) P (x, y, z) . 

Taking into account the boundary conditions, integra- 

tion/averaging over x and z leads to zero, except ∂ 2 y in periodic (in 

x ) regions of the fingers at arbitrary x and y ∈ [ −h, h ] . We have for 

a single finger 

1 

b 3 

∫ b/ 2 

−b/ 2 

d xd yd z∂ 2 y P (x, y, z) ≈ ∂ 2 y P (x, y, z = 0) . 

Therefore, we obtain the average Laplace operator for the 

fingers with the finger density ρ

d 

b 3 

∫ b/ 2 

−b/ 2 

d xd yd zd �P f (x, y, z) ≈ ρd∂ 2 y P (x, y, z = 0) . (2.2) 

The finger density ρ is a number of fingers on the interval of 

length a along the x direction. Without restriction of the generality 

we take ρ ∼ a / b . Since z component disappears from the averaged 

Laplace operator, we disregard z again in the distribution function 

P (x, y, z = 0) ≡ P (x, y ) . 
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