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a b s t r a c t 

Recently, the robustness of interconnected networks has attracted extensive attentions, one of which is to 

investigate the influence of coupling preference. In this paper, the memetic algorithm (MA) is employed 

to optimize the coupling links of interconnected networks. Afterwards, a comparison is made between 

MA optimized coupling strategy and traditional assortative, disassortative and random coupling prefer- 

ences. It is found that the MA optimized coupling strategy with a moderate assortative value shows an 

outstanding performance against cascading failures on both synthetic scale-free interconnected networks 

and real-world networks. We then provide an explanation for this phenomenon from a micro-scope point 

of view and propose a coupling coefficient index to quantify the coupling preference. Our work is helpful 

for the design of robust interconnected networks. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

Infrastructure systems, such as the World-Wide Web, power 

grids, communication networks and transportation systems, act an 

increasingly important role in our everyday life [1] . Normally, these 

infrastructures are in smooth operation. However, the random mal- 

function or malicious attack may lead to a collapse of the en- 

tire system. In recent years, large-scale communication outages [2] , 

blackouts [3] and traffic congestion [4] , which can result in serious 

economic consequences, receive widespread concerns. 

Complex network theory is a powerful tool to evaluate and im- 

prove the robustness of networked infrastructures. Numerous pre- 

vious research can be mainly divided into two aspects: topology 

robustness and cascading robustness. Albert [5] evaluated robust- 

ness based on network topology and found that scale-free net- 

works display a surprisingly high degree of tolerance against ran- 

dom failures, but sensitive to intentional attacks. Different from 

topology robustness, Motter et al. [6] proposed a load-capacity cas- 

cading failure model, in which the load of a node is defined by its 

betweenness centrality. Wang and Chen [7] investigated the uni- 

versal robustness characteristic of weighted networks against cas- 

cading failures by adopting a local weighted flow distribution rule 

and obtained an optimal weighting parameter. Wang and Rong 
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[8] investigated the robustness against cascading failures of US 

power grid and found that the low-load nodes also played vital 

roles in the cascading propagation. 

In spite of significant achievements, most previous works are 

limited to the case of isolated networks. However, many real net- 

worked systems are actually coupled with each other. In 2010, 

Buldyrev et al. [9] studied the electrical blackout in Italy, and 

firstly proposed a framework to capture the phenomenon of cas- 

cading failures in interdependent networks. Thereafter, the re- 

search of coupled networks drew extension attentions from differ- 

ent communities [10–25] and one can have a comprehensive re- 

view through the work of Boccaletti et al. [10] . Many crucial influ- 

ence factors, such as coupling strength [17,18] , coupling mode [19–

22] , coupling preference [23–25] are comprehensively investigated. 

In terms of coupling preference, Tan et al. [23] studied the cas- 

cading failures in interconnected networks under intentional attack 

and concluded that assortative coupling can better resist the cas- 

cades compared to disassortative or random coupling. Peng et al. 

[24] proposed a cascading model with different load-redistribution 

strategy on intra-links and coupling links, and drew the same con- 

clusion. Chen et al. [25] further found that assortative coupling 

performs better for dense coupling, while disassortative coupling 

is more robust for sparse coupling. 

Neither assortative nor disassortative coupling is the optimal 

strategy. Recently, researchers resort to intelligent optimization al- 

gorithms, which has shown outstanding performance in solving 
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many realistic problems [26–32] , to enhance network robustness 

[33–35] . Zhou et al. [33] proposed MA to enhance the robustness 

of scale-free network against malicious attack without changing 

the degree distribution. Tang et al. [34] introduced a memetic algo- 

rithm to optimize the topology of network resisting both targeted 

and random attacks. Chen et al. [35] applied particle swarm op- 

timization algorithm to search for the most favorable pattern of 

node capacity allocation to improve the network robustness with 

the minimum cost. Actually, the configuration of coupling links in 

interconnected networks is a combination optimization problem 

with discrete variables. In this paper, we design a specific MA to 

optimize the coupling links of interconnected networks and com- 

pare the MA optimized coupling strategy with traditional assorta- 

tive, disassortative and random coupling preferences. It is found 

that the MA optimized coupling strategy with moderate assortative 

value can better enforce the network robustness against cascading 

failures. Afterwards, an explanation from a micro-point of view is 

provided and an experiment on real-world is investigated. 

This paper is composed of 5 sections. Section 2 describes 

the interconnected networks model and three coupling preference 

strategies as well as the optimization model. Section 3 represents 

the memetic algorithm and Section 4 shows the simulation results 

and corresponding analysis. Section 5 summarizes the work. 

2. Model 

2.1. Network and cascading models 

Many real-world networks are found to be scale-free, such as 

the World-Wide Web [36] , Internet [37] and airline routes [38] , 

thus we adopt the well-known Barabási-Albert (BA) model to build 

each individual network [39] . The BA model starts with a small 

number ( m 0 ) of vertices, and at every time step a new vertex is 

added with m ( ≤ m 0 ) edges that link the new vertex to m dif- 

ferent vertices already present in the model. In the following, the 

BA model is set to m 0 = 2 and m = 2 . The interconnected net- 

work is composed of two BA scale-free networks, A and B . Without 

loss of generality, these two networks are assumed to share the 

same network size, N A = N B = N/ 2 , and the same average degree, 

〈 k A 〉 = 〈 k B 〉 = 〈 k 〉 . 
Networks A and B are coupled by interconnected links. Coupling 

probability p = 2 n c /N is defined as the ratio of the number of in- 

terconnected links n c to the network size N /2. Each node has at 

most one interconnected link. 

There are three common coupling preferences, namely assorta- 

tive, disassortative and random coupling: 

Assortative coupling. Couple the heaviest load node in network 

A with the heaviest load node in network B . Then couple the sec- 

ond heaviest load node in network A with the second heaviest load 

node in network B , and so on. Repeat this process until pN /2 cou- 

pling links are added. 

Disassortative coupling. Couple the heaviest load node in net- 

work A with the lightest load node in network B . Then couple the 

second heaviest load node in network A with the second lightest 

load node in network B , and so on. Repeat this process until pN /2 

coupling links are added. 

Random coupling. Randomly choose a node in network A and 

a node in network B . If neither of them has a coupling link, then 

couple them. Repeat this process until pN /2 coupling links are 

added. 

In the cascading model, the node load can be calculated by be- 

tweenness centrality if the traffic flow transmits along the shortest 

path. The betweenness centrality is defined by Freeman [40] as fol- 

lows: 

B (v ) = 

∑ 

s � = t � = v / ∈ V 

σst (v ) 
σst 

(1) 

where V is the set of vertices, and σ st denotes the number of 

shortest paths from s ∈ V to t ∈ V . For convention, σss = 1 [40] . 

σ st ( v ) denotes the number of shortest paths from s to t that go 

through v ∈ V . 

The node capacity C i is the maximum load that the node i can 

deal with. As in Ref [6] , the capacity of node is proportional to its 

initial load: 

C i = (1 + α) ∗ L i (2) 

where α is the tolerance parameter and L i is the initial load of 

node i . 

Initially, the highest-load node in the interconnected network is 

removed. The node load is then recalculated. If one node’s load is 

beyond its capacity, it will be removed from the system and the 

load will be updated. Repeat this step until there is no more over- 

loaded nodes. 

2.2. Optimization model 

Following common practices, only nodes in giant component 

remain functional after cascading process. Therefore, the propor- 

tion of the giant component to the initial network size is a natural 

measure of network robustness, which is defined as: 

G = 

N 

′ 
N 

(3) 

where G represents the network robustness, N is the size of the in- 

terconnected networks and N 

′ is the size of giant component after 

cascading failure. 

Our goal is to optimize the robustness of interconnected net- 

works by means of adjusting the coupling preference. For conve- 

nience, a coupling matrix M is used to describe the coupling pref- 

erence. 

M i j = 

{
0 , node A i and B j are not coupled. 
1 , node A i and B j are coupled. 

(4) 

where A i denotes node i in network A , and B j denotes node j in 

network B . Then the optimization model of coupling links can be 

formulated as a combination optimization problem: 

max G 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

N ∑ 

i =1 

M i j = 0 or 1 

N ∑ 

j=1 

M i j = 0 or 1 

N ∑ 

i =1 , j=1 

M i j = 

Np 
2 

0 < p ≤ 1 

(5) 

3. Method—memetic algorithm 

Memetic algorithm (MA), which is a hybrid metaheuristic, was 

first proposed by Pablo Moscato in his technical report [41] in 

1989. The term memetic comes from the concept of meme, defined 

as a unit of cultural evolution that can exhibit local improvement 

[42] . It is a marriage between a population-based global search and 

the heuristic local search. It is proven successful in various op- 

timization problems [43–46] . The framework of MA algorithm is 

presented in Algorithm 1 . 
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