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a b s t r a c t 

This paper is concerned with the pinning adaptive and impulsive synchronization problem of fractional- 

order complex dynamical networks. First, a generalized Barbalat’s Lemma is derived. Based on the gen- 

eralized Barbalat’s Lemma and some analysis techniques, we obtain some criteria, which guarantee that 

the whole state-coupled dynamical network can be forced to certain desired synchronous state by com- 

bining pinning adaptive control and pinning impulsive control. Finally, numerical simulations are given 

to demonstrate the effectiveness of the proposed control strategy. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Complex networks have been widely used to describe various 

artificial and natural systems, such as the internet networks [1] , bi- 

ological networks [2] , neural networks [3] , social networks [4] , etc. 

In general, a complex network is composed of a large number of 

interconnected dynamical nodes, in which each node is a unit with 

specific contents. In the past few decades, fractional-order com- 

plex networks have gained considerable research attention for its 

more advantage than classical integer-order complex networks in 

describing the memory and hereditary properties of many mate- 

rials and processes [5–8] . As an important and interesting collec- 

tive behavior of complex networks, synchronization has been stud- 

ied extensively. Note that there are some networks cannot be syn- 

chronized by themselves. Then, proper controllers are required for 

achieving synchronization. So far, many control schemes have been 

adopted to design effective controllers, such as adaptive control, in- 

termittent control, impulsive control, pinning control, and so on. 

It is well known that the advantage of adaptive control is 

that the control parameters can adjust themselves according to 

some suitable updating laws, which are designed under con- 

trol purpose according to the characteristics of considered system 
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[9–11] In [11] , Bao et al. investigated the synchronization of 

fractional-order memristor-based neural networks with time delay 

by adaptive control. Since the real-world complex networks nor- 

mally have a large number of nodes, it is usually difficult to control 

a complex network by adding the controllers to all nodes. To re- 

duce the number of the controllers, a natural approach is to control 

a complex network by pinning part of nodes [12–14] Recently, by 

combining the advantages of adaptive control and pinning control, 

authors of [16–19] investigated synchronization problem of com- 

plex networks via adaptive pinning control. In [19] , Chai et al. in- 

vestigated the global synchronization of fractional-order complex 

networks via adaptive pinning control. 

In fact, many practical systems often suddenly receive exter- 

nal disturbance, which makes systems change their trajectories 

in a very short time. This phenomenon is called impulse. There- 

fore, the study of the complex dynamical networks with impul- 

sive effects is important for understanding the dynamical behav- 

iors of the most real-world complex networks. There are lots 

of results about impulsive control for integer-order complex net- 

works, see [20–22] and references therein. Impulsive control of 

fractional-order complex networks is seldom studied except [23–

27] . In [26] , Stamova studied the global Mittag–Leffler synchroniza- 

tion of fractional-order neural networks by impulsive control. In 

[27] , Wang et al. investigated the exponential synchronization of 

fractional-order complex networks by pinning impulsive control. 

However, to the best of our knowledge, there are no results on the 

synchronization problem of complex networks via pinning adaptive 
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and impulsive control. Motivated by the above discussions, this pa- 

per will investigated the pinning adaptive and impulsive synchro- 

nization of fractional-order complex dynamical networks. 

The main contributions of this paper are the following aspects: 

(1) We generalize well-known Barbalat’s Lemma on the integer- 

order case to the discontinuous fractional-order case. (2) A new 

pinning adaptive and impulsive control method is proposed to deal 

with the synchronization problem of fractional-order complex net- 

works. (3) By using the generalized Barbalat’s Lemma and some 

analysis techniques, sufficient conditions are derived to realize the 

global synchronization of fractional-order complex networks. 

The organization of the paper is as follows. In Section 2 , the 

model formulation and some preliminaries are given. In Section 3 , 

some criteria for the global synchronization of fractional-order 

complex networks are obtained. In Section 4 , a numerical example 

is provided to illustrate the effectiveness of our theoretical results. 

In the last Section, we give a brief discussion. 

2. Preliminaries and model description 

In this paper, let R 

n be the n -dimensional Euclidean space with 

norm ‖·‖ , and N + = { 1 , 2 , 3 , · · · } . In this section, some definitions 

and lemmas are recalled which will be needed later. 

Definition 1 [28] . The fractional integral of order q for a function 

f is defined as 

t 0 I 
q 
t f (t) = 

1 

�(q ) 

∫ t 

t 0 

(t − s ) q −1 f (s ) ds, q > 0 , 

where �( ·) is the well-known Gamma function. 

Definition 2 [28] . Caputo fractional derivative of order q for a 

function f ∈ C n ([ t 0 , + ∞ ) , R ) is defined by 

c 
t 0 

D 

q 
t f (t) = 

1 

�(n − q ) 

∫ t 

t 0 

f (n ) ( s ) 

( t − s ) q −n +1 
ds, 

where �( ·) is the Gamma function, t ≥ t 0 and n is a positive integer 

such that n − 1 < q < n . Particularly, when 0 < q < 1, 

c 
t 0 

D 

q 
t f (t) = 

1 

�(1 − q ) 

∫ t 

t 0 

f ′ ( s ) 
( t − s ) q 

ds. 

Consider a general complex network consisting of N coupled 

identical nodes, with each node being a n -dimensional fractional- 

order dynamical system, which can be described as follows: 

c 
t 0 

D 

q 
t x i (t) = f (x i (t)) + c 

n ∑ 

j=1 

a i j �x j (t) + u i , i = 1 , 2 , · · · , N, (1) 

where 0 < q < 1, t 0 ≥ 0 is the initial time, c 
t 0 

D 

q 
t is 

in the sense of the Caputo fractional derivative, x i (t) = 

(x i 1 (t) , x i 2 (t) , · · · , x in (t)) T ∈ R 

n is the state vector of the i th 

node, and f : R 

n → R 

n is a nonlinear vector function describing 

the nonlinear dynamics of the single node, u i ∈ R 

n is controller 

to be designed later. The positive constant c > 0 is the coupling 

strength, and � ∈ R 

n ×n is the inner coupling matrix with positive 

elements. A = (a i j ) N×N is the coupling configuration matrix rep- 

resenting the topological structure of the network, in which a ij is 

defined as follows: If there is a direct connection from node i to 

node j , then a ij > 0; otherwise, a i j = 0 , and the diagonal elements 

of matrix A are defined by a ii = −∑ N 
j =1 , j 	 = i a i j . 

Let s (t) ∈ R 

n be a solution of an isolated node system 

c 
t 0 

D 

q 
t s (t) = f (s (t)) . (2) 

Our objective is to design some suitable controllers u i (i = 

1 , 2 , · · · , N) such that the solutions of the controlled network 

(1) globally synchronize with the solution of (1) , in the sense that 

lim 

t→ + ∞ 

‖ x i (t) − s (t) ‖ = 0 , i = 1 , 2 , · · · , N, 

for any initial conditions. 

To derive our main results, we need the following assumption 

and lemmas. 

Assumption 1. There exists a positive constant θ such that for any 

x, y ∈ R 

n , 

(x − y ) T ( f (x ) − f (y )) ≤ θ (x − y ) T (x − y ) . 

Lemma 1 [29] . If the Caputo fractional derivative c 
t 0 

D 

q 
t f (t) is inte- 

grable, then 

t 0 I 
q 
t 

c 
t 0 

D 

q 
t f (t) = f (t) −

n −1 ∑ 

k =0 

f (k ) (t 0 ) 

k ! 
(t − t 0 ) 

k . 

Especially, for 0 < q ≤ 1, one can obtain 

t 0 I 
q 
t 

c 
t 0 

D 

q 
t y (t) = y (t) − y (t 0 ) . 

Lemma 2 [30] . Suppose function g ( t ) is nondecreasing and differen- 

tiable on t ∈ [0, ∞ ), then for any constant h and t ∈ [0, ∞ ], 

c 
t 0 

D 

q 
t 

(
g(t) − h 

)2 

≤ 2 

(
g(t) − h 

)
c 
t 0 

D 

q 
t g(t) , 

where 0 < q < 1 . 

Lemma 3 [31] . Let 0 < q ≤ 1 . Suppose that f ( t ) ∈ C [ a, b ] and 
c 
a D 

q 
t f (t) ∈ C[ a, b] . Then, for all t ∈ ( a, b ], there exists ξ ∈ ( a, t ) such 

that 

f (t) = f (a ) + 

1 

�(q ) 
c 
a D 

q 

ξ
f (ξ )(t − a ) q . 

Lemma 4 [32] . Let x ( t ) be a continuous and derivable vector value 

function. Then for any time instant t ≥ t 0 

1 

2 

c 
t 0 

D 

q 
t x 

T (t) x (t) ≤ x T (t) c t 0 
D 

q 
t x (t) , ∀ q ∈ (0 , 1) , 

where 0 < q < 1 . 

Lemma 5 [33] . Assume that A and B are N × N Hermitian matrices. 

Let α1 ≥ α2 ≥ ��� ≥ αN , β1 ≥ β2 ≥ ��� ≥ βN , γ 1 ≥ γ 2 ≥ ���
≥ γ N be eigenvalues of A, B, and A + B, respectively. Then, one has 

αi + βN ≤ γi ≤ αi + β1 , i = 1 , 2 , · · · , N. 

Lemma 6 [33] . For a symmetric matrix M ∈ R 

N×N and a diag- 

onal matrix D = diag (d 1 , d 2 , · · · , d l , 0 , 0 , · · · , 0 ︸ ︷︷ ︸ 
N−l 

) with d i > 0, i = 

1 , 2 , · · · , l (1 ≤ l < N) , let M − D = 

(A − ˜ D B 
B T M l 

)
, where M l is the mi- 

nor matrix of M by removing its first l row-column pairs, A and B 

are matrices with appropriate dimensions, ˜ D = diag (d 1 , d 2 , · · · , d l ) . 

If d i > λmax (A − BM 

−1 
l 

B T ) , i = 1 , 2 , · · · , l, M − D < 0 is equivalent to 

M l < 0 . 

3. Main results 

In this section, we introduce a new lemma, which is a general- 

ization of the traditional Barbalat’s Lemma [34] , and propose an ef- 

fective control strategy to synchronize the complex network (2) to 

the desired orbit, which is a solution of system (2) . 
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