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a b s t r a c t 

Recently, various quantum physical systems have been suggested to control the precision of quantum 

measurements. Here, we propose a useful quantum system to enhance the precision of the parameter 

estimation by investigating the problem of estimation in double quantum dot (DQD) spin qubits by con- 

sidered a transmission line resonator (TLR) as a bus system. To do this, we study the dynamical variation 

of the quantum Fisher information (QFI) in this scheme including the influence of the different physical 

parameters. We show that the amount of QFI has a small decay rate in the time and it can be controlled 

by adjusting the magnetic coupling between DQDs via TLR, initial parameters, and detuning parameter 

between the qubit system and TLR. These features make DQDs via TLR good candidates for implementa- 

tion of schemes of quantum computation and coherent information processing. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

One of the most interest objectives of the quantum metrology is 

to explore the quantum mechanics features for analyzing and ex- 

amining the parameter-estimation precision, which is recently wit- 

nessed much interest and exhibited mandatory requirement in the 

development of the fields of quantum optics and information. The 

detection and determination of the rate change of the precision 

of an unknown parameter initially prepared in a quantum state 

is the fundamental assignment of the quantum estimation theory 

(QET) with essential aim is to improve the parameter-estimation 

parameter. There is a considerable effort in the theoretical and ex- 

perimental examination of the parameter estimation by deeming 

several practical quantum aspects such photon loss, decoherence, 

and practical problems of state generation [1–6] . Fisher informa- 

tion was initially introduced by Fisher [7] that uses a bound to 

characterize the elements for a probability of distribution and it 

plays a prominent role in the development of QET. QFI, which char- 

acterizes the sensitivity of the state with respect to changes in a 

parameter, is a key concept in parameter estimation theory. The 

importance of QET is to provide the optimal measurement for a 

quantum system that is subjected to an unknown parameter, us- 
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ing the Cramér-Rao inequality (QCR) in which its lower bound is 

characterized by QFI [8] . 

Actually, an important goal in solid-state quantum physics is to 

enhance the amount of the resolution. The motivation behind this 

quest comes both from the fact that parameter estimation for elec- 

trons in a solid-state structure has not yet been proved and from 

the recent experimental progress in the field of quantum informa- 

tion processing in these systems, leading to experimental realiza- 

tion of single and two-qubit manipulations of electron spin qubits 

in quantum dots [9–11] and coherent control of spins in diamond 

[12] . Many aspects of these quantum systems, such as hyperfine 

coupling to the nuclear spins [13,14] the spin blockade [15,16] , re- 

alization of the singlet-triplet two-level system by detaining elec- 

trons in quantum dot systems placed below the roof of a quan- 

tum heterostructure heterostructure [17] , and the effects of apply- 

ing a slanting magnetic field [18] which are currently active topics 

of research. Double quantum dot systems [19–25] with the phe- 

nomenon of TLR [26–32] are particularly attractive because of the 

relative long spin coherence and high controllability of DQD sys- 

tems and quantum bus function of the TLR. 

Last two decays, several works have been treated the Jaynes 

Cummings model (JC) with dissipation by the use of analytic ap- 

proximations and numerical calculations [33–40] . The solution in 

the presence of dissipation is not only of theoretical interest, but 

also important from a practical point of view since dissipation 

would be always present in any experimental realization of the 

model. However, the dissipation treated in the above studies is 

modelled by coupling to an external reservoir including energy 
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dissipation. As is well known, in a dissipative quantum system, the 

system loses energy by creating a bath quantum. In this kind of 

damping the interaction Hamiltonian commutes with that of sys- 

tem and in the dynamics only the phase of system state is changed 

in the course of interaction. Recently, it has been explored a way 

to couple electron states in DQD systems in the presence of a TLR 

with capacitors [41,42] . The interaction Hamiltonian between the 

qubits and the TLR is a standard JC model [43] . A switchable la- 

grange interaction can be achieved between any two spatially sep- 

arated qubits with the TLR. In this paper, we study the dynamical 

behaviour of the parameter estimation in DQDs using TLR as a bus 

system in terms of different parameters of the combined system. 

We focus on the QFI of the DQD with considering the optimal con- 

ditions for saturated QCR inequality. We find that the amount QFI 

can be controlled and has a small decay rate in the time by modi- 

fying the magnetic coupling between DQDs via TLR, initial param- 

eters, and detuning between the qubits and the TLR. Such a system 

can be employed to perform logical operations, which can be used 

to implement an universal quantum information and computation. 

This article is structured as follows. In Section 2 , we present a 

review of the QFI and defining the schematic diagram of the pa- 

rameter estimation adopter in this paper. In Section 3 , we present 

the model for the DQDs using TLR as a bus system and describe 

the dependence on different input parameters. Furthermore, we 

present the related major results with discussion. We conclude our 

work in Section 4 . 

2. Quantum estimation theory 

In this section, we give a brief summary on the QFI theory. The 

decisive objective of the QTE is to attain the best observable. When 

the quantum system will be in one state of the family { ρθ }, illus- 

trated the true estimated of parameter ˆ θ, that is Tr 
(
ρθ

ˆ θ
)

= θ . The 

QFI measures how precisely a state can detect an unknown param- 

eter and it is given by 

F Q = Tr 
[
ρθ L 2 

]
, (1) 

where ρθ presents the density matrix of the system, θ is the 

parameter to be measured, and L is the symmetric logarithmic 

derivation given by 

∂ρθ

∂θ
= 

1 

2 

[ Lρθ + ρθ L ] , (2) 

where, the QFI does not depend on the particular choice of L . 

The precision bound is asymptotically achieved by the maxi- 

mum likelihood estimator as well as the classical theory through 

quantum Cramér–Rao (QCR) inequality, 

�θ ≥ ( �θQCR ) = 

1 √ 

F Q 
≥ 1 √ 〈 L 2 〉 , (3) 

where ( �θ ) 2 is the mean square error in the parameter θ . The 

above inequality defines the principally smallest possible uncer- 

tainty in the value of the parameter estimation. The measurement 

uncertainty �θ is quantified through the units corrected, root- 

mean deviation of the estimate parameter θ from it true value 

�θ = 

θest 

| d 〈 θest 〉 θ /d θ | − θ . (4) 

Consider in general a readout on the probe be described by a 

POVM with one parameter family of the elements E ( ξ ) ∫ 
dξE(ξ ) = 1 . (5) 

Let p ( ξ | θ ) = tr ( E(ξ ) ρθ ) be the measured probabilities from the 

various outcomes of the POVM when the true value of the mea- 

sured parameter is θ . The QFI is given by [44,45] 

F Q = max 
{ E(ξ ) } 

F , (6) 

where F is the classical Fisher information computed from the 

probability distribution for the measurement outcomes as 

F = 

∫ 
dξ p ( ξ | θ ) 

[
d ln p ( ξ | θ ) 

dθ

]2 

= 

∫ 
d ξ

1 

p ( ξ | θ ) 

[
d p ( ξ | θ ) 

d θ

]2 

. (7) 

The optimization in the Eq. (6) such maximization needs differ- 

ent processes to be done, by performing the POVMs that minimize 

the measurement uncertainty and lead to maximize the Fisher in- 

formation. The upper bound on the classical Fisher information is 

given as [44,45] 

F ≤
∫ 

dξ tr 

(
E(ξ ) ρθ

tr ( E(ξ ) ρθ ) 

)
. tr 

(
E(ξ ) L 2 ρθ

)
(8) 

leading to 

F Q = 

∫ 
dξ tr 

(
E(ξ ) L 2 ρθ

)
= tr 

(
L 2 ρθ

)
= 〈 L 2 〉 , (9) 

and the second inequality in (3) is saturated. This inequality cir- 

cumvents the maximization problem by placing an upper bound 

on F Q in terms of the expectation value of the square of the sym- 

metric logarithmic derivative operator L . This expectation value can 

be computed directly from the initial state of the probe and its pa- 

rameter dependent dynamics, independent of the readout proce- 

dure. 

We choose to compare the precision of the parameter estima- 

tion for DQD spin qubits using this widely-accepted approach of 

QFI. The interferometric set-up generally consists of four steps. The 

first is the preparation step where the input state is chosen as ρ int 

for DQD. Then, a singlet-qubit phase gate is applied, given by 

U θ := | g〉〈 g| + e iθ | e 〉〈 e | , (10) 

The output state is obtained by performing a phase gate operator 

U θ on the input state; ρout = U θρint U 

† 

θ
. After the unitary process, 

the phase uncertainty is measured for the output mixed state. 

The entangled N -qubit states have been proposed as means to 

beat the so-called shot-noise limit accuracy in parameter estima- 

tion [46,47] . The QCR inequality provides a lower limit to the ac- 

curacy of estimation �θ in terms of the inverse of the square of 

the QFI associated with the generator of the unitary transforma- 

tion and the state of the system. Now, if ρ in is a separable state, 

the QFI scales as O ( N ) with the number of particles in the system, 

N , while it may scale faster for entangled ρ int . 

3. Theoretical model of two DQD spin qubits 

The Hamiltonian of the TLR can be written as 

H r = h̄ ω r a 
† a (11) 

where ω r is the frequency of the TLR. The Hamiltonian of a DQD 

with quantization along z−axix direction is given by [26,48–50] 

H D = E s | S 11 〉〈 S 11 | + ( �0 + E S ) | S 02 〉〈 S 02 | 
+ g B μB B e 

(| T + 11 〉〈 T + 11 | − | T −11 〉〈 T −11 | 
)

+ E T | T 0 11 〉〈 T 0 11 | + t ( | S 11 〉〈 S 02 | + | S 02 〉〈 S 11 | ) , (12) 

where {| S 11 〉 , | T 0 11 
〉 , | T + 

11 
〉 , | T −

11 
〉 , | S 02 〉} presents the two-electron sin- 

glet triplet basis are given by 

| T + 11 〉 = | ↑↑〉 , | T 0 11 〉 = 

1 √ 

2 

( | ↑↓〉 + | ↓↑〉 ) , | T −11 〉 = | ↓↓〉 

| S 11 〉 = 

1 √ 

2 

( | ↑↓〉 − | ↓↑〉 ) , 
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