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a b s t r a c t 

The Qi chaotic system is transformed into a Kolmogorov-type system, thereby facilitating the analysis of 

energy exchange in its different forms. Regarding four forms of energy, the vector field of this chaotic 

system is decomposed into four forms of torque: inertial, internal, dissipative, and external. The rate of 

change of the Casimir function is equal to the exchange power between the dissipative energy and the 

supplied energy. The exchange power governs the orbital behavior and the cycling of energy. With the 

rate of change of Casimir function, a general bound and least upper bound of the Qi chaotic attractor 

are proposed. A detailed analysis with illustrations is conducted to uncover insights, in particular, cycling 

among the different types of energy for this chaotic attractor and key factors producing the different 

types of dynamic modes. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

In the past 20 years, some numerical chaotic models such as 

the Chen system [1] , Lü system [2] , Qi chaotic system [3] , and 

some hyperchaotic systems [4 , 5] were generated. These systems 

were constructed via mathematics and simulations whereas the 

Lorenz system [6] was modeled on a physical process. A few 

studies have investigated the application of the Lorenz system in 

meteorology [7] and mechanics [8] . The main research focus of 

these numerical systems as well as the Lorenz system has been 

on their dynamic analysis. Topics usually include bound analysis 

[9] , aperiodic solutions, sensitivity to initial conditions, bifurcation 

theory [10] , circuit implementations, calculation of Lyapunov ex- 

ponents [11 , 12] , fractional order [13] , chaos-based communication, 

proof of chaos existence, chaos control [14] , and synchroniza- 

tion. However, these aspects of the research cannot explain the 

mechanism or reason for the production of dynamic modes, and 

also cannot interpret the physical analogues of state variables. To 

explore them, the mechanics of these numerical systems must 

be investigated. The lines of study include force analysis, physical 

analogue interpretation, energy transformation between internal 

energy, and supplied energy. Arnold [15] presented a Kolmogorov 

system describing a dissipative-forced dynamic system or hydro- 

dynamic instability with a Hamiltonian function. Pasini and Pelino 

[16] gave a unified view of the Kolmogorov and Lorenz systems, 

thereby providing a force analysis of the Lorenz system. The 
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recurrence of dynamics [17] and energy cycling [8] for the Lorenz 

system were also investigated with the understanding obtained 

from the Kolmogorov system. 

Although the derivation of the Lorenz system is different from 

these numerical chaotic systems, they all have similar vector 

fields and chaotic dynamics. Therefore, from the mechanic’s point 

of view, both types of systems must be governed by similar 

forces. The transformation of a numerical chaotic system into a 

Kolmogorov system can build a bridge between physical chaotic 

systems and numerical chaotic systems. Qi and Liang [18] trans- 

formed the Qi four-wing chaotic system to a Kolmogorov system, 

performed a force analysis and interpreted the state of chaos as 

angular momentum. 

Therefore, the Hamiltonian function and the Kolmogorov sys- 

tem provide a starting point in studying the mechanism for these 

numerical chaotic systems. Furthermore, the Casimir function, like 

enstrophy or potential vorticity in a fluid dynamic context, is very 

useful in analyzing stability conditions and global description of 

a dynamical system. It represents a constant of the motion of the 

Hamiltonian system; moreover it defines a foliation of the phase 

space [8 , 19] . The energetics of the Lorenz system using the Casimir 

function has already been studied [20] . 

The study of energy cycles is important in mechanics, for there 

is instantaneous exchange among kinetic energy, potential energy, 

dissipative and supplied energy in physical processes. Each type 

of energy is represented by a type of force. When multiple energy 

exchanges operate frequently and substantially, the mechanism 

becomes complicated, and chaos may arise. Because each type 

of torque has a corresponding energy, an analysis of energy can 
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reflect the torque characteristics. So far, there has been no study 

regarding the energy cycle of numerical chaotic systems. 

In this paper, the vector field of the Qi chaotic system is de- 

composed into inertial torque, internal torque, dissipative torque, 

and external torque. Correspondingly, kinetic energy, potential en- 

ergy, dissipative energy, and external energy are identified in the 

system. The rate of change of the Casimir energy for a Qi chaotic 

attractor governs the dynamics of the system. The mechanism for 

different dynamic modes is revealed from the combination of dif- 

ferent torques, which explains the physical phenomena and the en- 

ergy cycles. The bound of the chaotic attractor is given through the 

extremal points of the Casimir function. Normally, it is difficult to 

find the bound of a chaotic attractor; even if there is an available 

method [9] , the positive definite matrix is exceedingly difficult to 

solve in the equation for Lyapunov stability. 

The rest of the paper is organized as follows: Section 2 de- 

scribes the transformation between the Qi chaotic system and the 

Kolmogorov-type system. Section 3 presents the decomposition of 

the system’s energy into its four forms and analyzes the cycling 

of energy using the Hamiltonian and Casimir functions; the bound 

of the chaotic attractor is also proposed. Section 4 analyzes the 

energy cycling among the different dynamic modes and uncovers 

the reason for chaos generation. Finally, a conclusion is made. 

2. Transformation of the Qi chaotic system into Kolmogorov 

system 

The Qi chaotic system is presented in the form [3] 

˙ x 1 = a ( x 2 − x 1 ) + x 2 x 3 , 

˙ x 2 = c x 1 − x 2 − x 1 x 3 , 

˙ x 3 = x 1 x 2 − b x 3 . (1) 

Here, a, b, c ∈ R + are constant parameters of the system. 

To discover the physical analogue of the state variables and me- 

chanics of the system, we introduce the Kolmogorov system and 

the Euler equation. Arnold [15] presented a Kolmogorov system 

describing dissipative-forced dynamical systems or hydro-dynamic 

instability, written in 3D form 

˙ x = { x , H } − �x + f , (2) 

where x = [ x 1 x 2 x 3 ] 
T , { , } represents the algebraic structure of 

the kinetic energy part of the Hamiltonian function of a system, 

denoted by H , and the Lie–Poisson structure is defined as [21] 

{ F , G } = −x · (∇F × ∇G ) , (3) 

where F , G ∈ C ∞ ( g ∗), g is Lie algebra. The positive definite diagonal 

matrix � represents the dissipative force and the last term f 

represents the external force. 

The Euler equation without external force for an incompressible 

fluid or a free rigid body gives a Hamiltonian description, which 

can be written as [21] 

˙ x 1 = ( �3 − �2 ) x 2 x 3 , 

˙ x 2 = ( �1 − �3 ) x 1 x 3 , 

˙ x 3 = ( �2 − �1 ) x 1 x 2 , (4) 

where �i = I −1 
i 

, I i is the principle moment of inertia for the group 

SO(3), and x i is the angular momentum satisfying 

x i = I i ω i , (5) 

with ω i the angular velocity. Eq. (4) can be written in the succinct 

form 

˙ x = x × �x = x × �, (6) 

where x = [ x 1 x 2 x 3 ] 
T , � = [ ω 1 ω 2 ω 3 ] 

T , � = diag( �1 �2 �3 ) . 

Decomposing the Hamiltonian 

H = K + U (7) 

with U = 0 and 

K = 

1 

2 

(
�1 x 

2 
1 + �2 x 

2 
2 + �3 x 

2 
3 

)
, (8) 

and replacing F by x and G by H in Eq. (3), Eq. (4) is equivalent to 

[21] 

˙ F = { F , H } , (9) 

i.e., 

˙ x = { x , H } = x × �x . (10) 

We find that under a pure inertial force, the Kolmogorov 

system (2) is the same as the Euler Eq. (10) . 

Remark 1. 

(1) The force (or torque) { x , H } in the Euler equation for a free 

rigid body is in the form of a fictitious force, either the iner- 

tial force or the centrifugal force, which consists of quadratic 

terms. 

(2) The Kolmogorov system is a generalized Euler equation with 

dissipative and external forces. 

(3) The quadratic terms are skew-symmetric, i.e., the sum of the 

coefficients of all quadratic terms (inertial force) in the Lie–

Poisson bracket, [ Eq. (3) or (10) ], is zero. 

(4) The Hamiltonian function H in the bracket of the Kol- 

mogorov system only contains the kinetic energy term K , i.e., 

the potential energy vanishes ( U = 0 ). 

We now establish an analogy between the Qi chaotic system 

and the Kolmogorov system. Note that the sum of coefficients of 

all quadratic terms is nonzero in the Qi chaotic system. To satisfy 

the condition, we introduce the following transformation 

y 1 = αx 1 , y 2 = x 2 , y 3 = βx 3 , (11) 

with inverse 

x 1 = 

1 

α
y 1 , x 2 = y 2 , x 3 = 

1 

β
y 3 , (12) 

where α and β are nonzero constants. Hence, Eq. (1) is trans- 

formed into 

˙ y 1 = 

α

β
y 2 y 3 − a y 1 + αa y 2 , 

˙ y 2 = − 1 

αβ
y 1 y 3 + 

c 

α
y 1 − y 2 , 

˙ y 3 = 

β

α
y 1 y 2 − b y 3 . (13) 

We choose parameters α and β such that 

α

β
− 1 

αβ
+ 

β

α
= 

1 

αβ
( α2 + β2 − 1) = 0 . (14) 

to satisfy the skew-symmetric requirement of the Lie–Poisson 

bracket. To determine the potential energy from the Hamiltonian 

function, we make a further transformation 

z 1 = y 1 , z 2 = y 2 , z 3 = y 3 − γ , (15) 

with inverse 

y 1 = z 1 , y 2 = z 2 , y 3 = z 3 + γ . (16) 

Eq. (13) is transformed into 

z 1 = 

α

β
z 2 z 3 − a z 1 + 

(
αa + 

αγ

β

)
z 2 , 

˙ z 2 = − 1 

αβ
z 1 z 3 + 

(
c 

α
− γ

αβ

)
z 1 − z 2 , 

˙ z 3 = 

β

α
z 1 z 2 − b z 3 − bγ . (17) 
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