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a b s t r a c t 

The sensitive dependence of periodicity and chaos on parameters is investigated for three-dimensional 

nonlinear dynamical systems. Previous works have found that noninvertible low-dimensional maps 

present power-law exponents relating the uncertainty between periodicity and chaos to the precision 

on the system parameters. Furthermore, the values obtained for these exponents have been conjectured 

to be universal in these maps. However, confirmation of the observed exponent values in continuous- 

time systems remain an open question. In this work, we show that one of these exponents can also be 

found in different classes of three-dimensional continuous-time dynamical systems, suggesting that the 

sensitive dependence on parameters of deterministic nonlinear dynamical systems is typical. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The final asymptotic behavior of nonlinear dynamical systems 

can be severely affected by small perturbations in their control pa- 

rameters [1] . The so-called parameter sensitivity has been experi- 

mentally observed in different areas of knowledge [2–5] . The cause 

of this sensitivity is the existence of bifurcation sets in parame- 

ters spaces that, regardless of any scale, provoke several topological 

changes in the system dynamics. One of the most drastic example 

is the conversion of stable periodic into chaotic behavior, or vice- 

versa. The parameter sensitivity in this case dramatically limits the 

ability of someone surely set the parameters of a system to oscil- 

late either in a chaotic or in a periodic behavior. 

Following works studying the sensitivity of multiple attractors 

on the initial conditions and parameters [6,7] , the sensitive de- 

pendence of periodicity and chaos on parameters has been first 

addressed in 1985 by Grebogi et al. [8] . The authors have de- 

fined a scaling exponent, α, such that for α lower than 1, the 

system asymptotic solutions, periodic and chaotic, are regarded 

to be sensitive dependent on the system‘s parameters. By vary- 

ing the unique parameter of an one-dimensional discrete-time sys- 

tem, the quadratic map, the authors have found the scaling ex- 

ponent α to be equal to 0.413(5), indicating the parameter sen- 

sitivity in this system. Also, in 1985 [9] , J.D. Farmer has proposed 

a different coarse-grained measure to quantify the parameter de- 
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pendence of periodicity and chaos, and use it to confirm sensi- 

tive dependence on parameters in the quadratic and sine maps. 

In these works this exponent reflects the topology of the bound- 

ary between parameter regions leading to chaotic and periodic be- 

havior. On the other hand, Hunt et al. [10] have theoretically esti- 

mated the scaling exponent, α, but only based on the topological 

properties of the boundaries between parameter regions describ- 

ing large chaotic attractors (to be defined subsequently) and pa- 

rameter regions describing periodic orbits of the quadratic map. In 

their analyses, they have found the scaling exponent α to be equal 

to 0.51(3). This value of α obtained by Hunt et al. indicates a low 

parameter sensitivity when only large chaotic attractors are con- 

sidered. This issue has been addressed in 2014 by Joglekar et al. 

[11] , who found a general relationship between the two scaling 

exponent values previously defined. Moreover, they conjecture that 

these two values for the scaling exponent, α, are universal for one- 

dimensional quadratic maps. 

However, a question that remains open at this point is whether 

these scaling exponents also apply to higher-dimensional systems, 

such the ones whose the dynamics is described by continuous- 

time equations, and more than one parameter is available to in- 

duce sensitivity. 

In this work, we address the sensitive dependence on parame- 

ters of periodicity and chaos in two-dimensional parameters sets of 

continuous-time dynamical systems. Specifically, we quantify the 

sensitive on parameters of these systems by calculating the frac- 

tion of parameters that changes their corresponding asymptotic 

dynamical behavior under a given perturbation. We observe that 
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Fig. 1. Typical two-dimensional a × b parameter set of nonlinear dynamical sys- 

tems. The white color indicates the parameters leading to periodicity (periodic 

windows). The gray color indicates parameters corresponding to chaos via period- 

doubling bifurcation, and black color indicates parameters corresponding to chaos 

outside the windows (large chaotic attractors). The magnification shows a sequence 

of periodic windows immersed in a parameter region of chaos via period-doubling. 

such fraction of uncertain parameters scales as a power-law with 

the magnitude of the perturbation, and therefore, yields the scal- 

ing exponent, α. Moreover, we verify that the scaling exponent 

value, measured considering any chaotic attractor, is roughly the 

same within the three different classes of continuous-time systems 

here investigated, agreeing with the value obtained for the one- 

dimensional, sine, and quadratic maps. This result suggests that the 

scaling exponent α is a universal measure for the sensitive depen- 

dence of periodicity and chaos on parameters of nonlinear dynam- 

ical systems. 

In parameters sets of nonlinear dynamical systems, the sensi- 

tive dependence of periodicity and chaos can be investigated by 

the way that their corresponding parameter subsets are arranged. 

The parameters leading to chaos is interwoven with continuous 

sets of parameters leading to periodic stable behavior, called peri- 

odic windows. Periodic windows are parameter sets, which in this 

work is assumed to contain parameter sets corresponding to a pe- 

riodic orbit and its eventual bifurcated harmonic solutions. On the 

other hand, we consider complex structures, i.e., regions of param- 

eter sets that contain scale-free accumulations of periodic windows 

and also parameters corresponding to chaos. More specifically, as a 

system parameter is varied, the periodic trajectory with the low- 

est period, p , appearing for a parameter inside a periodic window, 

undergoes a cascade of period-doubling bifurcations resulting in a 

“small” p -band chaotic attractor. Subsequently, such chaotic attrac- 

tor goes through an interior crisis, at which the complex structures, 

containing chaos and periodicity, terminates giving place to a large 

chaotic attractor that is larger than the p -band chaotic one (small 

chaotic attractor) [11,12] . Furthermore, the chaotic regions describ- 

ing attractors that become chaotic via period-doubling occurring 

inside a complex structure is also interwoven with other high- 

order complex structures that also contain parameters leading to 

chaos appearing via period-doubling cascades. The parameter re- 

gion describing small chaotic attractors inside a lower-order com- 

plex structure becomes a region describing large chaotic attractors 

surrounding higher-order one. This hierarchical arrangement is re- 

peated over and over again in all scales of parameter sets, gener- 

ating the sensitive dependence on parameters in deterministic dy- 

namical systems. 

In Fig. 1 , we show a typical complex structure commonly ob- 

served in the two-dimensional parameter sets of several systems 

[13–22] . The white regions are periodic windows and represent pa- 

rameters leading to periodic solutions, gray represents the param- 

eters leading to the small p -band chaotic attractors, and black rep- 

resents the parameters leading to large chaotic attractors. Thus, in 

Fig. 1 , one can see a complex structure that is formed by the white 

and gray color while the regions outside the complex structure is 

black. Since this complex structure has the terminator boundary 

curve at a border collision crisis (upper part), it is a primary com- 

plex structure. The inset box whose amplification can be seen in 

the upper right corner shows other periodic windows lying on a 

region dominated by multi-band chaotic attractors, the gray re- 

gion. Each one of these cascading higher-order periodic windows 

forms a higher-order complex structure, if its neighboring multi- 

band chaotic attractors are taken into consideration. Our analysis 

to measure the scaling exponent will be made considering such 

regions, where cascades of periodic windows accumulates into a 

primary complex structure. 

In the last 20 years, the complex structures shown in Fig. 1 have 

been numerically observed in parameter sets of a large num- 

bers of systems ranging from discrete-time biological oscillator 

to continuous-time lasers and chemical reactions models [13–22] . 

Furthermore, more recently, such periodic arrangements are being 

observed in parameter sets of electronic circuits in lab experiments 

[23–27] , increasing the interest in the sensitive dependence on pa- 

rameters. 

2. Results 

Our numerical results are based on simulations of three differ- 

ent classes of continuous-time dynamical systems. In our calcula- 

tions, we address parameter sets composed by sequences of high- 

order complex structure [28] , as in the inset of Fig. 1 , sequences 

occur for parameters inside a complex structure in the border with 

the large chaotic attractors located outside the complex structure. 

In our computations, we consider chaotic attractors of all sizes, and 

we did not consider systems for which the parameters spaces are 

Riddled or Wada as discussed in Refs [29,30] . 

To represent the class of oscillators for which the Shilnikov the- 

orem can be applied [31–36] , we consider the Rössler oscillator. 

This system is described by the following set of nonlinear differen- 

tial equations: 

˙ x = −y − z, 

˙ y = x + ay, (1) 

˙ z = (b + z) x − cz. 

and we study the parameter plane a × c . The other parameter b of 

Eq. (1) is fixed at b = 0 . 3 [17] . 

The class of nonlinear forced oscillators are represented by the 

Morse oscillator which is governed by the following nonlinear dif- 

ferential equation [37] : 

ẍ + d ̇ x + 8 e −x (1 − e −x ) = 2 . 5 cos (ωt) , (2) 

and we study the parameter plane ω × d . 

We also work with a loss-modulated CO 2 laser described by a 

rate-equation with a time-dependent parameter: 

˙ u = 

1 

τ
(z − k (t)) u, 

˙ z = (z 0 − z) γ − uz, (3) 

where k (t) = k 0 (1 + a cos 2 π f t) . We study the a × f parameter 

plane. All other parameters are fixed: τ = 3 . 5 × 10 9 s , γ = 1 . 978 ×
10 5 s −1 , z 0 = 0 . 175 , and k 0 = 0 . 1731 [15] . 

We numerically integrate Eq. from (1) to (3) using a Fourth- 

order Runge Kutta method and obtain the two-dimensional param- 

eter spaces of those systems. In those parameters sets, we select 

N = 3 . 0 × 10 4 pairs of random parameters, say ( a 0 , b 0 ), uniformly 

space distributed and compute the largest Lyapunov exponents of 

the trajectory of the considered systems for these random param- 

eters to determine if the correspondent state is periodic ( λ < 0) 
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