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a b s t r a c t 

In this study, the dynamical behaviors of a discrete time eco-epidemiological system are discussed. The 

local stability, bifurcation and chaos are obtained. Moreover, the global asymptotical stability of this sys- 

tem is explored by an iteration scheme. The numerical simulations illustrate the theoretical results and 

exhibit the complex dynamical behaviors such as flip bifurcation, Hopf bifurcation and chaotic dynamical 

behaviors. Our main results provide an efficient method to analyze the global asymptotical stability for 

general three dimensional discrete systems. 
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1. Introduction 

As well known that mathematical models have been widely 

used to describe the behaviors between different species in natural 

system [1–6] . Among these models, part of them are used to de- 

tect the competitive, cooperation and predator-prey relationships 

for different species which are called ecological models. Another 

models are used to explore the outbreak, transmission and extinc- 

tion behaviors of diseases between the populations which are usu- 

ally called epidemic models. 

However, in some cases, the prey (or predator) species may be 

infected diseases, and the diseases will spread among the prey and 

predator species. When the prey specie is infected with the dis- 

ease the infected prey may be more easily captured by the preda- 

tor than the susceptible prey, or the predator only eats the in- 

fected prey. For example, in Salton Sea of California, the Tilapia 

fish is infected by a virio class of bacteria, Vibro alginolyticus, 
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which spreads in the fish species and the infected fishes become 

much easier available for predation for piscivorous birds [7,8] . In 

this case, the dynamical behaviors between the prey and preda- 

tor will become more complex because not only the behaviors in 

the predator-prey process should be considered but also the dis- 

ease spreading in the prey species must be explored [9] . There- 

fore, eco-epidemiological systems are needed to address the com- 

plex dynamical behaviors between the species. 

Recently, more and more attention has been paid on the dy- 

namical behaviors of eco-epidemiological systems [10–22] But 

most of these works focus on the continuous time systems de- 

scribed by differential equations, few of them are about the dis- 

crete time systems described by difference equations. Previous 

studies [23–42] show that the discrete systems have more com- 

plex dynamical behaviors than the corresponding continuous sys- 

tems except some same behaviors. Moreover, the discrete time sys- 

tems are more reasonable than the continuous time systems from 

some perspectives of the natural system [38–42] 

In [37] , the permanence, global asymptotical stability and Hopf 

bifurcation of the following continuous time predator-prey system 

are obtained. 

d S 

d t 
= rS(1 − S + I 

K 

) − βSI 

d I 

d t 
= βSI − cI − bIY 

mY + I 
, 
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d Y 

d t 
= −dY + 

kbIY 

mY + I 
, (1.1) 

where S ( t ), I ( t ) and Y ( t ) denote the population density of suscep- 

tible prey, infected prey and the population density of predator at 

time t , respectively. r is the intrinsic birth rate of the prey popula- 

tion, K is the carrying capacity of the environment about the prey 

population, β is the transmission coefficient, c is the death rate of 

infected prey, m is the ratio-dependent rate, b is the predation co- 

efficient, k is the coefficient in conversing prey into prey and d is 

the death rate constant of the predator. The parameters r, K, β , c, 

b, m, d are positive constant and k is satisfied k ∈ (0, 1]. 

In our previous study [9] , we discussed the local stability of a 

discrete time system discretized from system (1.1) . If the bilinear 

incidence rate βSI becomes into the standard incidence rate βSI 
S+ I 

then how to analyze the dynamical behaviors. Therefore, in this 

paper, the following discrete time system with standard incidence 

rate βSI 
S+ I is considered. 

S n +1 = S n exp 

[
r 

(
1 − S n + I n 

K 

)
− βI n 

S n + I n 

]
, 

I n +1 = I n exp 

[
βS n 

S n + I n 
− c − bY n 

mY n + I n 

]
, 

Y n +1 = Y n exp 

[
kbI n 

mY n + I n 
− d 

]
, (1.2) 

where r, K, β , c, b, m, d and k are defined as in system (1.1) . It is 

assumed that the initial value of system (1.2) S 0 > 0, I 0 > 0, Y 0 > 

0 and all the parameters are positive. Obviously, if the initial value 

( S 0 , I 0 , Y 0 ) is positive, then the corresponding solution ( S n , I n , Y n ) 

is positive too. 

It is known that the global asymptotical stability is an impor- 

tant dynamical behavior for species systems. However, for a three 

dimensional discrete system (as system (1.2) in this study) it is dif- 

ficult to prove it. Our previous study [9] only discussed the locally 

stability. Therefore, in this study, we will address the following 

questions: (1) How to analyze the local stability of system (1.2) ? 

(2) Which parameters mainly control the dynamical behaviors vari- 

ations, such as flip bifurcation, Hopf bifurcation and chaos. (3) Is 

there an efficient method to obtain the global asymptotical stabil- 

ity of system (1.2) , and whether this method can be extended to 

three dimensional discrete system? 

The organization of this study is as follows. In the second 

section the existence and local stabilities of equilibria in system 

(1.2) are discussed. In the third section, the global asymptotical sta- 

bility of equilibria will be proved by an iteration scheme. In the 

fourth section we present the numerical simulations, which not 

only illustrate our results with the theoretical analysis, but also ex- 

hibit the complex dynamical behaviors. The conclusion is provided 

in the last section. 

2. Analysis of equilibria 

For system (1.2) we always assume that S 0 > 0, I 0 > 0, Y 0 > 0 

and all the parameters are positive, then it is obviously any solu- 

tions of system (1.2) are positive for all n ≥ 0. 

Firstly, on the existence of the nonnegative equilibria of system 

(1.2) , we have the following results. 

Theorem 1. 

(1) System (1.2) always has two equilibria E 0 (0, 0, 0) and E 1 ( K , 0, 

0) . 

(2) When c < β < c + r and bk ≤ d , 

E 2 ( 
cK(r+ c−β) 

rβ
, 

K(β−c)(r+ c−β) 
rβ

, 0) is another equilibrium of 

system (1.2) . 

(3) When bk > d and f < β < r + c, besides E 0 , E 1 and E 2 , system 

(1.2) has one positive equilibrium E 3 ( S 
∗, I ∗, Y ∗), where 

S ∗ = 

f I ∗

β − f 
, I ∗ = 

K(β − f )(r + f − β) 

rβ
, 

Y ∗ = 

bk − d 

md 
I ∗, f = c + 

bk − d 

mk 
. 

Theorem 1 shows that the equilibria can be simultaneous exis- 

tence for certain parameter ranges, such as the results (2) and (3). 

However, they have different stabilities with the variations of the 

parameters. When the parameters change, some equilibria may be 

stable and the others will become unstable. These will be obtained 

according to their stable analyses. 

Now, we study the stabilities of equilibria E 0 , E 1 , E 2 and E 3 ( S 
∗, 

I ∗, Y ∗) of system (1.2) . The stabilities of E 0 (0, 0, 0) and E 1 ( K , 0, 0) 

can be obtained by a similar discussion as in [9] . Therefore, in this 

study we only focus on the dynamical behaviors of E 2 and E 3 ( S 
∗, I ∗, 

Y ∗), including local stability, global asymptotical stability and com- 

plex dynamical behaviors (bifurcation and chaos). 

The Jacobian matrix of system (1.2) at an equilibrium E ( S, I, Y ) 

is J(E) = J(E j ) where j = 0 , 1 , 2 , 3 . Let w 1 , w 2 amd w 3 are the three 

eigenvalues of matrix J ( E j ), we have the following definitions. 

(1) If | w 1 | < 1, | w 2 | < 1 and | w 3 | < 1, then E ( S, I, Y ) is called a 

sink and is locally asymptotically stable; 

(2) If | w 1 | > 1, | w 2 | > 1 and | w 3 | > 1, then E ( S, I, Y ) is called a 

source and is unstable; 

(3) If | w 1 | > 1, | w 2 | > 1 and | w 3 | < 1 (or | w 1 | < 1, | w 2 | > 1 and 

| w 3 | > 1), then E ( S, I, Y ) is called a saddle and is unstable; 

(4) If | w 1 | = 1 or | w 2 | = 1 or | w 3 | = 1 , then E ( S, I, Y ) is called 

non-hyperbolic. 

For equilibrium E 2 ( 
cK(c+ r−β) 

rβ
, 

K(β−c)(c+ r−β) 
rβ

, 0) , the characteris- 

tic equation of J ( E 2 ) can be computed as 

f (w ) = (w − e (kb−d) )(w 

2 + Bw + C) , 

where 

B = −
(

2 − rS 

K 

)
, C = 1 − rS 

K 

+ 

rβSI 

K(S + I) 
. 

Obviously, according to bk ≤ d, f ( w ) has one eigen- 

value w 1 = e (kb−d) with 0 < w 1 ≤ 1. Further, we note 

g(w ) = w 

2 + Bw + C. For detecting the stability of equilibrium 

E 2 ( 
cK(c+ r−β) 

rβ
, 

K(β−c)(c+ r−β) 
rβ

, 0) , the roots of g(w ) = 0 need be de- 

tected. Supposing the roots of g(w ) = 0 are w 2, 3 . We use the fol- 

lowing result which can be easily proved by the relations between 

roots and coefficients of the quadratic equation. 

Lemma 1. (see [43] ) Let F (w ) = w 

2 + Bw + C, where B and C are 

constants. Supposing F (1) > 0 and w 1 , w 2 are two roots of F (w ) = 0 . 

Then 

(1) | w 1 | < 1 and | w 2 | < 1 if and only if F (−1) > 0 and C < 1 ; 

(2) w 1 = −1 and | w 2 | � = 1 if and only if F (−1) = 0 , B � = 0, 2 ; 

(3) | w 1 | < 1 and | w 2 | > 1 if and only if F (−1) < 0 ; 

(4) | w 1 | > 1 and | w 2 | > 1 if and only if F (−1) > 0 and C > 1 ; 

(5) w 1 and w 2 are the conjugate complex roots and | w 1 | = | w 2 | = 

1 if and only if B 2 − 4 C < 0 and C = 1 . 

Now, by computing, we obtain g(1) = 

rβSI 
K(S+ I) > 0 . Further, 

g(−1) = 4 − 2 rS 

K 

+ 

rβSI 

K(S + I) 
. 

From g(−1) = 0 , we have r = r ∗, β = β1 , β2 , where 

r ∗ = 

4 β − c(c − β)(2 + c − β) 

c(2 + c − β) 
, 
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