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1. Introduction

As well known that mathematical models have been widely
used to describe the behaviors between different species in natural
system [1-6]. Among these models, part of them are used to de-
tect the competitive, cooperation and predator-prey relationships
for different species which are called ecological models. Another
models are used to explore the outbreak, transmission and extinc-
tion behaviors of diseases between the populations which are usu-
ally called epidemic models.

However, in some cases, the prey (or predator) species may be
infected diseases, and the diseases will spread among the prey and
predator species. When the prey specie is infected with the dis-
ease the infected prey may be more easily captured by the preda-
tor than the susceptible prey, or the predator only eats the in-
fected prey. For example, in Salton Sea of California, the Tilapia
fish is infected by a virio class of bacteria, Vibro alginolyticus,
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which spreads in the fish species and the infected fishes become
much easier available for predation for piscivorous birds [7,8]. In
this case, the dynamical behaviors between the prey and preda-
tor will become more complex because not only the behaviors in
the predator-prey process should be considered but also the dis-
ease spreading in the prey species must be explored [9]. There-
fore, eco-epidemiological systems are needed to address the com-
plex dynamical behaviors between the species.

Recently, more and more attention has been paid on the dy-
namical behaviors of eco-epidemiological systems [10-22] But
most of these works focus on the continuous time systems de-
scribed by differential equations, few of them are about the dis-
crete time systems described by difference equations. Previous
studies [23-42] show that the discrete systems have more com-
plex dynamical behaviors than the corresponding continuous sys-
tems except some same behaviors. Moreover, the discrete time sys-
tems are more reasonable than the continuous time systems from
some perspectives of the natural system [38-42]

In [37], the permanence, global asymptotical stability and Hopf
bifurcation of the following continuous time predator-prey system
are obtained.
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dy kblY
dr —dY + my +1°
where S(t), I(t) and Y(t) denote the population density of suscep-
tible prey, infected prey and the population density of predator at
time t, respectively. r is the intrinsic birth rate of the prey popula-
tion, K is the carrying capacity of the environment about the prey
population, B is the transmission coefficient, c is the death rate of
infected prey, m is the ratio-dependent rate, b is the predation co-
efficient, k is the coefficient in conversing prey into prey and d is
the death rate constant of the predator. The parameters r, K, 8, c,
b, m, d are positive constant and k is satisfied k < (0, 1].

In our previous study [9], we discussed the local stability of a
discrete time system discretized from system (1.1). If the bilinear
incidence rate BSI becomes into the standard incidence rate f—ﬂ
then how to analyze the dynamical behaviors. Therefore, in this
paper, the following discrete time system with standard incidence

(1.1)

rate ’Sgﬂ is considered.

Spi1 = Spexp :r<1 Ars”iiln) ngfun}’

Inir = Inexp [Sf inln o m\ZYi 1,1}’

Yoi1 = Yoexp :n%] - di|, (1.2)

where 1, K, B8, ¢, b, m, d and k are defined as in system (1.1). It is
assumed that the initial value of system (1.2) So > 0, Iy > 0, Yy >
0 and all the parameters are positive. Obviously, if the initial value
(So, Ip, Yo) is positive, then the corresponding solution (S, In, Yn)
is positive too.

It is known that the global asymptotical stability is an impor-
tant dynamical behavior for species systems. However, for a three
dimensional discrete system (as system (1.2) in this study) it is dif-
ficult to prove it. Our previous study [9] only discussed the locally
stability. Therefore, in this study, we will address the following
questions: (1) How to analyze the local stability of system (1.2)?
(2) Which parameters mainly control the dynamical behaviors vari-
ations, such as flip bifurcation, Hopf bifurcation and chaos. (3) Is
there an efficient method to obtain the global asymptotical stabil-
ity of system (1.2), and whether this method can be extended to
three dimensional discrete system?

The organization of this study is as follows. In the second
section the existence and local stabilities of equilibria in system
(1.2) are discussed. In the third section, the global asymptotical sta-
bility of equilibria will be proved by an iteration scheme. In the
fourth section we present the numerical simulations, which not
only illustrate our results with the theoretical analysis, but also ex-
hibit the complex dynamical behaviors. The conclusion is provided
in the last section.

2. Analysis of equilibria

For system (1.2) we always assume that So > 0, I > 0, Yo > 0
and all the parameters are positive, then it is obviously any solu-
tions of system (1.2) are positive for all n > 0.

Firstly, on the existence of the nonnegative equilibria of system
(1.2), we have the following results.

Theorem 1.
(1) System (1.2) always has two equilibria Ey(0, 0, 0) and E{(K, O,
0).
(2) When c<fB<c+r and bk < d,
EZ(CK(r;’ﬂC‘ﬂ), K(ﬂ“ig“‘ﬁ) ,0) is another equilibrium of
system (1.2).

(3) When bk > d and f < 8 <1+, besides Egy, E; and E,, system
(1.2) has one positive equilibrium E3(S*, I¥, Y*), where

I _KB=De+f-B)
B-f B '
. bk—d, bk —d
Y= md F, mk

Theorem 1 shows that the equilibria can be simultaneous exis-
tence for certain parameter ranges, such as the results (2) and (3).
However, they have different stabilities with the variations of the
parameters. When the parameters change, some equilibria may be
stable and the others will become unstable. These will be obtained
according to their stable analyses.

Now, we study the stabilities of equilibria Eq, E;, E; and E3(S*,
I*, Y*) of system (1.2). The stabilities of Ey(0, 0, 0) and E{(K, 0, 0)
can be obtained by a similar discussion as in [9]. Therefore, in this
study we only focus on the dynamical behaviors of E, and E3(S*, I*,
Y*), including local stability, global asymptotical stability and com-
plex dynamical behaviors (bifurcation and chaos).

The Jacobian matrix of system (1.2) at an equilibrium E(S, I, Y)
is J(E) =J(E;) where j=0,1,2,3. Let wy, w, amd ws are the three
eigenvalues of matrix J(E;), we have the following definitions.

St =

f=c+

(1) If [wq] < 1, [wp| < 1 and |ws| < 1, then E(S, I, Y) is called a
sink and is locally asymptotically stable;

(2) If [wq] > 1, [wy| > 1 and |ws| > 1, then E(S, [, Y) is called a
source and is unstable;

(3) If [wq| > 1, |wy| > 1 and |ws| < 1 (or |wq| < 1, [wy| > 1 and
|ws| > 1), then E(S, I, Y) is called a saddle and is unstable;

(4) If l[wq] =1 or |wy| =1 or |w3| =1, then E(S, I, Y) is called
non-hyperbolic.

For equilibrium EZ(CK(C:r’ﬂ ) KB ’C)rg”’ﬂ ). 0), the characteris-
tic equation of J(E;) can be computed as

Fw) = (w—e®=D)(w? 4 Bw +0),
where
S S rBSI
B=—(2-—=), C=1——+ ——.
( K) K TKS+D
Obviously, according to bk < d, fiw) has one eigen-
value w; =e®-d) with 0 < w; < 1. Further, we note

w) =w? +Bw+C. For detecting the stability of equilibrium
EZ(CK(Cr*ﬂr’ﬁ), K(ﬂ’c)rg”’ﬁ),O), the roots of g(w) =0 need be de-
tected. Supposing the roots of g(w) =0 are w; 3. We use the fol-
lowing result which can be easily proved by the relations between
roots and coefficients of the quadratic equation.

Lemma 1. (see [43]) Let F(w) =w? + Bw +C, where B and C are
constants. Supposing F(1) > 0 and wy, w, are two roots of F(w) = 0.
Then

(1) [wq] < 1 and |wy| < 1 if and only if F(-1) >0and C < 1;

(2) wqy = -1 and |wy| # 1 if and only if F(-1) =0, B # 0, 2;

(3) Iwql < 1 and |wy| > 1 if and only if F(—1) < 0O;

(4) |[wq| > 1 and |wy| > 1 if and only if F(-1) >0 and C > 1;

(5) wy and w, are the conjugate complex roots and |wq| = |w,| =
1ifand only if B2 —4C <0 and C = 1.

rBSI

Now, by computing, we obtain g(1) = K&y > 0. Further,
2rS rBSI
e S ()L

From g(—1) = 0, we have r =r*, 8 = 81, B, where

_4B—cc-pQ2+c-p)

r c2+c-p)




Download English Version:

https://daneshyari.com/en/article/5499651

Download Persian Version:

https://daneshyari.com/article/5499651

Daneshyari.com


https://daneshyari.com/en/article/5499651
https://daneshyari.com/article/5499651
https://daneshyari.com

