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a b s t r a c t 

This paper presents a new implementation of a reliable iterative method proposed by Temimi and Ansari 

namely (TAM) for approximate solutions of a nonlinear problem that arises in the thin film flow of a third 

grade fluid on a moving belt. The solution is obtained in the form of a series that converges to the exact 

solution with easily computed components, without any restrictive assumptions for nonlinear terms. The 

results are bench-marked against a numerical solution based on the classical Runge–Kutta method (RK4) 

and an excellent agreement is observed. Error analysis of the approximate solution is performed using the 

error remainder and the maximal error remainder. An exponential rate for the convergence is achieved. 

A symbolic manipulator Mathematica ®10 was used to evaluate terms in the iterative process. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear differential equations play an important role in mod- 

eling numerous important phenomena occurring in various fields 

of physics, chemistry and engineering science, and are frequently 

modeled through nonlinear differential equations. 

Various methods have been used to solve linear and nonlin- 

ear differential equations such as Adomain decomposition method 

(ADM), variational iteration method (VIM), homotopy perturbation 

method (HPM), homotopy analysis method (HAM) and some other 

analytical and approximate methods. 

Many problems in fluid mechanics are modeled by nonlinear 

differential equations and the exact solution is difficult or impos- 

sible to obtain, therefore, approximate and numerical methods are 

used to handle these type of problems [1] . 

The flow and heat transfer phenomena of a viscous liquid over 

a stretching surface have promising applications in a number of 

technological processes such as metal and polymer extrusion, con- 

tinuous casting and drawing of plastic sheets [2,3] . 

Also, Wang and Pop [4] have studied the flow of a power-law 

fluid film on an unsteady stretching surface by HAM. Liu and An- 

derson [5] have examined the heat transfer in a liquid film driven 

by a horizontal sheet. 

The fluids classically known as Newtonian, at constant temper- 

ature and pressure, and in simple shear, the shear stress is pro- 

portional to the rate of shear and the constant of proportionality 

is the familiar dynamic viscosity. Newtonian fluid means there is a 
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linear relationship between shear stress and the rate of shear, oth- 

erwise, the fluid is non-Newtonian when the relation is nonlinear 

or complex [6] . 

The solution of Newtonian and non-Newtonian fluids have been 

rapidly increased due to the importance of these kind of fluids in 

practical engineering problems [7–10] . Many attempts have been 

made to develop analytical and approximate methods to solve non- 

linear thin film flow problems, such as ADM and VIM [2,6] , HPM 

[3,11] , HAM [12] . 

Recently, Temimi and Ansari [13] have introduced a semi- 

analytical iterative technique namely (TAM) for solving nonlinear 

problems. The TAM is used for solving many differential equa- 

tions, such as nonlinear second order multi-point boundary value 

problems [14] , nonlinear ordinary differential equations [15] . AL- 

Jawary et al. have successfully applied the TAM for Duffing equa- 

tions [16] and some chemistry problems [17] , and the results ob- 

tained from the method indicate that the TAM is accurate, fast, ap- 

propriate, and has a higher convergence. 

In this paper, the TAM will be applied to solve nonlinear thin 

film flow problems. Special discussion is given for the study of 

convergence based on [15] and the error analysis of the TAM. 

This paper has been organized as follows: In Section 2 , the 

nonlinear thin film flow problems (NTFFPs) will be introduced. In 

Section 3 , the basic idea of TAM is presented and discussed. In Sec- 

tion 4, solving the NTFFPs by the TAM will be given. In Section 5, 

the convergence and error analysis are introduced and discussed. 

In Section 6 , the numerical simulation will be illustrated and dis- 

cussed. Finally, the conclusion is given in Section 7 . 
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Fig. 1. Physical sketch of the flow of moving belt through a non-Newtonian fluid 

[6] . 

2. Nonlinear thin film flow problems 

The following nonlinear boundary value problem presents the 

thin film flow of a third grade fluid on a moving belt [1,11] : 

d 2 v 
dx 2 

+ 

6(k 2 + k 3 ) 

μ

(
dv 
dx 

)2 
d 2 v 
dx 2 

− ρg 

μ
= 0 , (1) 

v (0) = k, 
dv 
dx 

= 0 , at x = δ, (2) 

where v is the fluid velocity which is a function of x only, ρ the 

density, μ the dynamic viscosity, k 2 and k 3 are material constants 

of the third grade fluid, g the acceleration due to gravity, δ the 

uniform thickness of the fluid film and k the speed of the belt as 

shown in Fig. (1) . For simplicity, some assumptions are made: the 

flow is in steady state, the flow is laminar and uniform, and the 

film fluid thickness δ is uniform [6] . 

The following dimensionless variables will be introduced 

ˆ x = 

x 

δ
, ̂  v = 

v 
k 
, β = 

(k 2 + k 3 ) k 
2 

μδ2 
, m = 

ρgδ2 

μk 
. 

Then, Eqs. (1) and (2) will be reduced to the following system, 

ignoring the symbol ˆ , 

d 2 v 
dx 2 

+ 6 β

(
dv 
dx 

)2 
d 2 v 
dx 2 

− m = 0 , (3) 

with the boundary conditions 

v (0) = 1 , 
dv 
dx 

= 0 , at x = 1 , (4) 

Eq. (3) is a well-posed second order nonlinear ODE. By integrat- 

ing Eq. (3) once with respect to x , we get: 

dv 
dx 

+ 2 β

(
dv 
dx 

)3 

− mx = c 1 , (5) 

and applying the second boundary condition in Eq. (4) , we obtain 

c 1 = −m, therefore, the following first order nonlinear ODE is ob- 

tained: 

dv 
dx 

+ 2 β

(
dv 
dx 

)3 

− m (x − 1) = 0 , (6) 

v (0) = 1 , (7) 

It is worth to mention that, when β = 0 , Eq. (1) reduces to the 

Newtonian fluid case [1,11] . Also, for simplicity, accuracy and re- 

ducing the computational time, we will solve Eqs. (6) and (7) by 

the TAM rather than Eqs. (3) and (4) . 

3. The basic idea of TAM 

Temimi and Ansari [13–15] have introduced the semi-analytical 

method TAM which can be summarized by the following: 

Let us consider the general differential equation 

L (v (x )) + N(v (x )) + g(x ) = 0 , (8) 

with boundary condition 

B (v , 
dv 
dx 

) = 0 (9) 

where x indicates the independent variable, v ( x ) is an unknown 

function, g ( x ) is a known function, L is a linear operator, N is a 

nonlinear operator. Here, we can take linear parts and add them to 

N as needed. The method is applied as follows: we start by assum- 

ing that v 0 ( x ) is an initial approximation of the solution v ( x ) to the 

equation, and is the solution of the linearized equation. 

L (v 0 (x )) + g(x ) = 0 , with B 

(
v 0 , 

dv 0 
dx 

)
= 0 (10) 

To find the next iterate to the solution, we solve the following 

equation: 

L (v 1 (x )) + g(x ) + N(v 0 (x )) = 0 , with B 

(
v 1 , 

dv 1 
dx 

)
= 0 (11) 

Thus, we have a simple iterative step which is improving the 

solution of a linear set of equations, 

L (v n +1 (x )) + g(x ) + N(v n (x )) = 0 , with B 

(
v n +1 , 

dv n +1 

dx 

)
= 0 

(12) 

It is noted that each of the v i ( x ) are solutions to Eq. (8) . Thus, 

evaluating more approximate terms, provides better accuracy. 

4. Convergence and error analysis 

In order to discuss the convergence and error analysis for TAM 

applied to NTFFPs, we follow a similar procedure as given for a 

second-order nonlinear ODE with some modifications [15] . Define 

the following L 2 norm 

‖ f‖ = 

(∫ t 

0 

f 2 
) 1 

2 

(13) 

The error remainder is given by [16] 

ER n = 

d 2 v n 
dx 2 

+ 6 β

(
dv n 
dx 

)2 
d 2 v 
dx 2 

− m (14) 

The maximal error remainder parameters are: 

ME R n = max 
0 ≤x ≤1 

!‘ | E R n (x ) | , (15) 

Consider the thin film flow problem 

d 2 v 
dx 2 

+ 6 β

(
dv 
dx 

)2 
d 2 v 
dx 2 

− m = 0 (16) 

with the following boundary condition 

v (0) = 1 , 
dv 
dx 

= 0 , at x = 1 , (17) 

The main aim is to prove that the sequence of functions v n , 

which are solutions of [16] 

d 2 v n +1 

dx 2 
+ 6 β

(
dv n 
dx 

)2 
d 2 v n 
dx 2 

− m = 0 (18) 



Download English Version:

https://daneshyari.com/en/article/5499655

Download Persian Version:

https://daneshyari.com/article/5499655

Daneshyari.com

https://daneshyari.com/en/article/5499655
https://daneshyari.com/article/5499655
https://daneshyari.com

