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a b s t r a c t 

The rescaled range (R/S) analysis was used for analyzing the fractal scaling properties of heart rate vari- 

ability (HRV) of subjects undergoing premeditation and meditation states. Eight novice subjects and four 

advanced practitioners were considered. The corresponding pre-meditation and meditation HRV data 

were obtained from the Physionet database. The results showed that mindfulness meditation induces 

a decrement of the HRV long-range scaling correlations as quantified with the time-variant Hurst expo- 

nent. The Hurst exponent for advanced meditation practitioners decreases up to values of 0.5, reflecting 

uncorrelated (e.g., white noise-like) HRV dynamics. Some parallelisms between mindfulness meditation 

and deep sleep (Stage 4) are discussed, suggesting that the former can be regarded as a type of induced 

deep sleep-like dynamics. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Eastern meditation techniques (e.g., yoga) are increasingly used 

as a psychological intervention to deal with a diversity of dis- 

advantageous conditions, including stress, chronic pain and anxi- 

ety [1,2] . The aim of mindfulness meditation is to modulate the 

present thinking by reducing analytical burden, as well as block- 

ing obsessive and discursive thoughts [3] . Quieting thinking and 

practicing self-control, two key elements of mindfulness medita- 

tion, can have large effects in mind and body, leading to impor- 

tant reductions of stress and anxiety that are detectable by, e.g., 

changes in skin conductivity [4] . A hypothesis considered in the 

recent decades is that mindfulness meditation induces important 

changes in the physiological condition of practitioners [2] . The pi- 

oneering work by Wallace [5] provided evidence that meditation is 

accompanied by changes in oxygen consumption, heart rate, skin 

resistance, and power of certain EEG frequencies. Subsequent re- 

search efforts have focused on finding the functional links between 

mindfulness meditation and the activity of the autonomic nervous 

system (ANS) via fMRI monitoring [4] , heart rate variability anal- 

ysis [6] , sleep studies [7] , endocrine system response [8] , among 

others. Despite these efforts, the clarification of the immediate and 
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long-term effects of mindfulness meditation training and the un- 

derlying physiological mechanisms is still an open problem. 

Indexes related to the activity of the ANS are commonly consid- 

ered as biomarkers for monitoring meditative states [4,9,10] . These 

indexes include heart rate/heart rate variability (HRV) parameters, 

skin conductance/resistance responses, respiratory amplitude/rate, 

and EEG frequencies modulation. Although neuro-imaging tech- 

niques are highly efficient methods for monitoring dynamics of 

meditation, they are expensive and disturbing during the medi- 

tation process. In contrast, the measurement of such ANS indexes 

seems lees complicated and marginally invasive. The general hy- 

pothesis behind the use of ANS indexes is that mindfulness med- 

itation changes some physiological state through autonomic con- 

trol actions [11] . Basically, the ANS regulates the heart rate dynam- 

ics via sympathetic and parasympathetic efferent networks. The 

parasympathetic influence on heart rate dynamics, primarily me- 

diated by the vagus nerve, provokes a rapid increase in the dura- 

tion of the cardiac cycle. It is primarily responsible for the respi- 

ratory sinus arrhythmia (RSA) fluctuations and the high frequency 

variability of the heart rhythm [12] . On the other hand, the sym- 

pathetic control primarily driven by the release of norepinephrine, 

also becomes indirectly manifested in the short-term fluctuations 

of the heart rhythm [13] . 

Accordingly, the HRV data appear as ANS signals that can 

be easily obtained with standard, ambulatory and inexpensive 
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technologies (e.g., Holter monitors). The availability of HRV sig- 

nals as indicators of the ANS activity has motivated their use for 

monitoring different stages of mindfulness meditation. Thus, ex- 

tracting information to gain insights in the physiological mecha- 

nisms associated with the beneficial effects of different meditation 

techniques has been the focus of diverse research effort s. Fourier 

spectral analysis is commonly used to show the displacement of 

HRV dynamics towards the manifestation of high-frequency com- 

ponents [14] . In turn, this effect has been interpreted as a sig- 

nature of the dominance of the parasympathetic (i.e., vagal) tone 

over the sympathetic activity [15,16] . Wavelet transform has been 

applied as well to extract the low- and high-frequency features 

of HRV series during meditation [17] . The reduction of the largest 

Lyapunov exponent during meditation has been also reported [18] . 

Other study indicated that the width of the multifractal singular- 

ity spectra is significantly narrower than those obtained in pre- 

meditation, indicating that the HRV signals become more regular 

and that their multifractality degree decreases during meditation 

[19] . Decrements in the high-frequency modulation connected with 

short-term correlations and the complexity of HRV signals were 

also detected using scaling analysis and entropy estimates [20] . 

The Shannon entropy showed that the complexity of HRV signal 

decreases in meditation in comparison with a pre-meditative state 

[21] . 

The aim of this work is to characterize the HRV time-variant 

dynamics before and during mindfulness meditation. To this end, 

rescaled range (R/S) analysis implemented over a sliding window 

was used to monitor the behavior of the Hurst exponent in the 

transition from pre-meditation to meditation states. HRV data was 

obtained from the Physionet meditation database involving eighth 

novice subjects and four advanced practitioners undergoing two 

meditation techniques. 

2. Subjects 

All HRV data were gathered from the Physionet database that 

provides heart period RR sequences obtained at the Beth Israel 

Deaconess Medical Center (Boston, USA). The experimentation pro- 

cedure and details of the subjects were described by Peng et al. 

[22] . For completeness in presentation, a brief description of the 

meditation techniques and subjects participating is described be- 

low. Chinese Chi and Kundalini Yoga meditation techniques were 

considered. The Chi practitioners were postdoctoral and graduate 

students that were relatively novices in the practice of meditation. 

Most of these subjects were introduced in the Chi meditation prac- 

tice about 1–3 months before the study. The Chi meditation group 

consisted of 5 women and 3 men (age 26–35 years with mean of 

29 years). The subjects carried Holter recorders for about 10 h un- 

der normal daily activities. At the fifth hour of recording, the sub- 

jects practiced meditation during an hour of meditation. The prac- 

titioners sat quietly while listening to a taped guidance. The con- 

trol of spontaneous breathing was instructed to meditators while 

visualizing an opening/closing cycle of a lotus in the stomach. The 

Chinese Chi subjects were coded as C1 to C8, following the Phys- 

ionet database numbering. 

Four subjects (2 women and 2 men, aged range 20–52 with 

mean of 33 years) also participated in Kundalini Yoga sessions. This 

group was considered to have an advanced level in the meditation 

practice. Subjects carried a Holter by approx. 1.5 hours before med- 

itation. Also, 15 minutes of baseline quiet breathing were recorded 

just before the meditation session. The protocol consisted of se- 

quences of controlled breathing and chanting exercises, performed 

while seated in a cross-legged posture. The Kundalini Yoga subjects 

were coded as Y1 to Y4, following the Physionet database number- 

ing. 

3. Methodology 

HRV signals exhibit complex patterns of stochastic nature. An 

interesting question that should be addressed is whether se- 

quences of HRV contain long-term correlations. For a given se- 

quence X N = { x k } N k =1 
, the corresponding runoff auto-correlation 

function C ( s ) describes how persistence decays in time. If the ele- 

ments of a time-series x k are uncorrelated, C ( s ) is zero for all scales 

s. If correlations exist only up to a certain number of events s ∗, 

the auto-correlation function will vanish from s ∗. By contrast, for 

long-term correlations, C ( s ) decays by a scaling power-law C(s ) = 

〈 x k x k + s 〉 ≈ s −γ . For large values of s , a direct calculation of C ( s ) can 

be hindered by noise and by data non-stationarities. If the time- 

series is stationary, one can use standard spectral analysis tech- 

niques and calculate the power spectrum E ( f ) of the time-series as 

a function of the frequency f . For long-term correlated data, one 

has that E ( f ) ≈ 1/ f β , where β = 1 − γ . However, if the time-series 

is not stationary, conventional spectral analysis can yield signifi- 

cant bias in the estimation of the correlation strength. The rescaled 

range (R/S) analysis is a method used to estimate autocorrelation 

properties of time series. The R/S analysis, developed by Hurst [23] , 

is intended to distinguish completely random time series from cor- 

related ones. Rigorous robustness and stability analysis of the R/S 

method were later provided by Mandelbrot and Wallis [24] . 

The main idea behind the R/S analysis is that one looks at the 

scaling behavior of the rescaled cumulative deviations from the 

mean, or the distance the system travels as a function of time. For 

an independent system, the distance covered increases, on aver- 

age, by the square root of time. If the system covers a larger (resp., 

smaller) distance, it cannot be considered as independent by def- 

inition, and changes must be influencing each other, so that they 

become correlated (resp., anti-correlated). The R/S statistic is the 

range of partial sums of deviations of sequences from its mean, 

rescaled by its standard deviation. For a given time series X N = 

{ x k } N k =1 
, consider a M -dimensional subsequence Y M 

= { y k } M 

k =1 
⊂ X N , 

where M < N . Then, the R/S statistic is estimated by computing 

the subsample mean ȳ M 

= 

1 
M 

∑ M 

k =1 y k , the sequence from partial 

summations z i = 

∑ 

k =1 
i ( y k − ȳ M 

) , the range R M 

= max { z i } − min { z i } 
and the rescaled range (R/S) M 

= R M 

/ σM 

„ where the sample stan- 

dard deviation is given by 

σM 

= 

[ 

1 

M 

M ∑ 

k =1 

( y k − ȳ M 

) 
2 

] 1 / 2 

(1) 

These steps can be summarized in the following equation [24] : 

(R/S) M 

= 

1 

σM 

[ 

max 
1 ≤i ≤M 

i ∑ 

k =1 

( y k − ȳ M 

) − min 

1 ≤i ≤M 

i ∑ 

k =1 

( y k − ȳ M 

) 

] 

(2) 

The value ( R / S ) M 

corresponds to the maximum possible dis- 

tance that a walker can travel with the sequence of steps Y M 

. The 

rescaled range is estimated over a sufficiently large number of non- 

overlapping sub-vectors (namely, [ N / M ]) Y M 

with different sizes or 

scales M (given in number of events) and then averaged over a suf- 

ficiently large number of sample sub-vectors over the whole fractal 

domain N . The recommended time-scale range to assess is from 10 

to N /5. If the stochastic process associated to the sequence X N is 

scaling over a certain domain M ∈ ( M min , M max ), the R/S statistic 

follows a power-law 

(R/S) M 

= b M 

H (3) 

where b is a constant and H is the Hurst exponent, which 

is a fractal-like scaling measurement of the time series auto- 

correlations. A log-log plot of ( R / S ) M 

as a function of the scale M 
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