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In this paper, we introduce the saturated treatment and logistic growth rate into an SIR epidemic model 

with bilinear incidence. The treatment function is assumed to be a continuously differential function 

which describes the effect of delayed treatment when the medical condition is limited and the number 

of infected individuals is large enough. Sufficient conditions for the existence and local stability of the 

disease-free and positive equilibria are established. And the existence of the stable limit cycles also is 

obtained. Moreover, by using the theory of bifurcations, it is shown that the model exhibits backward 

bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcations. Finally, the numerical examples are given 

to illustrate the theoretical results and obtain some additional interesting phenomena, involving double 

stable periodic solutions and stable limit cycles. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the past decades, mathematical modeling has been playing a 

dramatically vital role in the theory of epidemiology. Various epi- 

demic models have been established and investigated extensively, 

which leads to the huge progress in the studies of disease control 

and prevention (See, for example [1–8] ). In classical epidemic mod- 

els, it is usually assumed that the recovered rate of the infective is 

proportional to the number of the infective. However, every coun- 

try should have a maximal capacity treatment for diseases. There- 

fore, it is vital to describe the limited capacity for treatment [9] . 

Wang and Ruan in [10] , introduced the following constant treat- 

ment function of diseases into an SIR epidemic model, 

T (I) = 

{
r, I > 0 , 

0 , I = 0 , 
(1.1) 

which simulated a limited capacity for treatment. Later, Wang 

[11] considered the piecewise linear treatment function 

T (I) = 

{
kI, 0 ≤ I ≤ I 0 , 

kI 0 , I > I 0 , 
(1.2) 
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where k and I 0 are positive constants. This means that the treat- 

ment rate is proportional to the number of the infective before the 

capacity of treatment is reached and takes the maximal capacity 

kI 0 , otherwise. Recently, Zhang and Liu [12] introduced a continu- 

ously differentiable treatment function 

h (I) = 

rI 

1 + αI 

to describe the saturation phenomenon of the limited medical re- 

sources, and proposed the following SIR epidemic model with sat- 

urated incidence rate ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= � − βSI 

1 + kI 
− dS, 

dI 

dt 
= 

βSI 

1 + kI 
− (d + γ + ε) I − rI 

1 + αI 
, 

dR 

dt 
= γ I + 

rI 

1 + αI 
− dR. 

(1.3) 

The dynamical behaviors, include the backward bifurcation and lo- 

cal stability of equilibria are studied. In [13] , the authors took a 

deeper investigation for the above model. The sufficient conditions 

for the existence of backward bifurcation, as well as the existence, 

stability and the direction of Hopf bifurcation are established. 

In [10–14] , we see that models with saturated incidence rate 

are assumed to have a constant input of the susceptible. How- 

ever, in many realistic problems the assumption of logistic growth 

input of the susceptible may be more reasonable for a relatively 

long-lasting disease or a disease with high death rate. Actually, 

varying total population models have been studied widely already 
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(See, for example [15–17] ). In this paper, we suppose that the sus- 

ceptible population of a country follows logistic growth. For sim- 

plicity, we assume that newborns directly enter into the suscepti- 

ble class and the infected or recovered ones do not contribute to 

births and deaths in susceptible class. 

Thus, our SIR epidemic model is proposed in the following 

form. ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

dS 

dt 
= rS(1 − S 

K 

) − βSI, 

dI 

dt 
= βSI − (μ + α + σ ) I − λI 

1 + εI 
, 

dR 

dt 
= σ I + 

λI 

1 + εI 
− μR, 

(1.4) 

where S ( t ), I ( t ) and R ( t ) denote the numbers of the susceptible, 

infectious and recovery at time t , respectively. r is the intrinsic 

growth rate of susceptible population, K denotes the carrying ca- 

pacity of the country ignoring the infection and recovered persons, 

β denotes the transmission rate, μ is natural death rate, α is the 

disease-induced death rate, σ represents the recovered rate, λ rep- 

resents the maximal medical resources supplied per united time, 

and ε is half-saturation constant, which measures effect of being 

delayed for treatment. It is assumed in this paper that λ is non- 

negative constant and other parameters are positive constants. 

The organization of this paper is as follows. In Section 2 , we 

analyze the existence of equilibria, backward bifurcation and the 

local dynamics of equilibria. In Section 3 , we focus on the discus- 

sion of Hopf bifurcation at critical values. In Section 4 , the exis- 

tence of Bogdanov–Takens bifurcations is discussed. In Section 5 , 

we present some numerical examples to verify our theoretical re- 

sults and find some other meaningful phenomena. 

2. Equilibria and local dynamics 

We notice that the recovery R does not appear in the first two 

equations of model (1.4) , thus, it is equivalent to investigate the 

following subsystem of model (1.4) ⎧ ⎪ ⎨ 

⎪ ⎩ 

dS 

dt 
= rS(1 − S 

K 

) − βSI, 

dI 

dt 
= βSI − (μ + α + σ ) I − λI 

1 + εI 
. 

(2.1) 

For the convenience, we denote m = μ + α + σ . Firstly, we make 

scalings: (r ′ , β ′ , λ′ , ε ′ ) = ( r m 

, 
βK 
m 

, λm 

, Kε) and (x, y, τ ) = ( S K , 
I 
K , mt) . 

To avoid the abuse of mathematical notation, we still denote ( r ′ , 
β ′ , λ′ , ε′ , τ ) by ( r, β , λ, ε, t ). Then model (2.1) becomes ⎧ ⎪ ⎨ 

⎪ ⎩ 

dx 

dt 
= rx (1 − x ) − βxy, 

dy 

dt 
= βxy − y − λy 

1 + εy 
. 

(2.2) 

Theorem 2.1. All solutions ( x ( t ), y ( t )) of model (2.2) with initial con- 

ditions x (0) > 0, y (0) > 0 are positive and bounded for all t ≥ 0 . 

Proof. Let m (t) = min { x (t ) , y (t ) } , then m (0) > 0. Assume that 

there exists t̄ > 0 such that m ( ̄t ) = 0 and m ( t ) > 0 for all t ∈ [0 , ̄t ) . 

If m ( ̄t ) = x ( ̄t ) , from the first equation of model (2.2) , we have 

x ( ̄t ) = x (0) exp (r(1 − x ( ̄t )) − βy ( ̄t )) > 0 , 

which leads to a contradiction. Similarly, when m ( ̄t ) = y ( ̄t ) , we 

also can obtain the contradiction. Hence, m ( t ) > 0 for all t ≥ 0, 

and thereby, ( x ( t ), y ( t )) is positive for all t ≥ 0. 

Consider Lyapunov function V = x + y . Calculating the derivative 

of V ( x, y ) along the solution of model (2.2) , we obtain 

dV 

dt 
= rx (1 − x ) − y − λy 

1 + εy 
≤ r(1 − x ) x − y, 

Fig. 1. The infective sizes at equilibria versus R 0 when take λ = 0 . 1 : 0 . 01 : 0 . 92 , 

β = 1 . 7 , ε = 3 and r = 4 , which satisfies condition r > 

β2 

ε(β−1) 
> 0 . 

then there exist constants δ > 0 and η > 0 such that 

dV 

dt 
≤ δ − η(x + y ) = δ − ηV. 

Hence, lim sup t→∞ 

V ≤ δ
η . This shows that the solution is ulti- 

mately bounded, and the theorem is proved. �

It is clear that model (2.2) always has a unique disease-free 

equilibrium P 0 (1, 0). The positive equilibria of model (2.2) can be 

gained by solving equations 

rx (1 − x ) − βxy = 0 , βxy − y − λy 

1 + εy 
= 0 , (2.3) 

which yields 

β2 εy 2 + (β2 + rε(1 − β)) y + r(1 + λ − β) = 0 . (2.4) 

Denote 

R 0 = 

β

1 + λ
. 

From (2.4) , it is clear that if β ≤ 1 and R 0 < 1 , then model 

(2.2) has no positive equilibrium. Computing the discriminant of 

(2.4) , we get 

� = (β2 + rε(1 − β)) 2 − 4 β2 εr(1 + λ − β) . 

Define R 

∗=1 − [ β2 + rε(1 −β)] 2 

4 β2 εr(1+ λ) 
. We have that � > 0 is equivalent to 

R 

∗< R 0 . Furthermore, we also have �= κ2 −4 β2 εrλ with κ= β2 + rε(β−1) . 

Clearly, we can obtain the following results. 

Theorem 2.2. 

(1) Model (2.2) always has a disease-free equilibrium P 0 . 

(2) If R 0 = 1 and r> (1+ λ) 2 

ελ
, model (2.2) has a unique positive equi- 

librium P 1 ( x 1 , y 1 ), where y 1 = rελ−β2 

β2 ε 
and x 1 = 

εy 1 +1+ λ
β(1+ εy 1 ) 

. 

(3) Assume r> 
β2 

ε(β−1) 
> 0 , then we have 

( a ) if R 

∗ < R 0 < 1 , model (2.2) has two positive equilib- 

ria P 2 ( x 2 , y 2 ) and P 3 ( x 3 , y 3 ), where y 2 = rε(β−1) −β2 −
√ 

�

2 β2 ε 
,y 3 = 

rε(β−1) −β2 + 
√ 

�

2 β2 ε 
and x i = 

εy i +1+ λ
β(1+ εy i ) 

, i = 2 , 3 ; 

( b ) if R 

∗ = R 0 , model (2.2) has a unique positive equilibrium 

P 4 ( x 4 , y 4 ), where y 4 = rε(β−1) −β2 

2 β2 ε 
and x 4 = 

εy 4 +1+ λ
β(1+ εy 4 ) 

. 

(4) If R 0 > 1 , model (2.2) has a unique positive equilibrium P 5 ( x 5 , 

y 5 ), where y 5 = rε(β−1) −β2 + 
√ 

�

2 β2 ε 
and x 5 = 

εy 5 +1+ λ
β(1+ εy 5 ) 

. 

(5) Model (2.2) has no positive equilibrium in other cases. 

On the basis of results above and Fig. 1 , the following result can 

be obtained naturally. 
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