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1. Introduction

Energy harvesting from ambient mechanical vibrations is im-
portant for remote electronic devices to fully achieve their en-
ergy autonomy [1-4]. Cordless and wireless sensor systems are
desirable, and this can only be accomplished by using batteries
and/or harvested energy. Vibration energy harvesting (VEH) is a
useful technology for those modern electronic applications, as the
energy captured from the ambient can be used directly or used
recycled to, at least, recharge batteries or other storage devices,
which enhances battery life and, consequently, to extend the de-
vice autonomy in terms of time between recharges [1]. Earlier re-
sults were obtained by using cantilever beams with piezoelectric,
electrostatic, or electromagnetic coupling [5]. In a simplified case,
the mono frequency excitation provided by narrow-band energy
sources is engaged leading to resonance-based energy harvesting
[5,6]. Therefore, the resonance frequency of the energy harvesting
device must be tuned to the characteristic frequency of the avail-
able ambient energy source since, in most of the cases, this fre-
quency is not well determined or it can be time varying. In or-
der to implement such a requirement, several self-tuning strategies
have been developed up to now. Some of them consist on pas-
sive solutions mechanically achieved through special geometries
of the transducer harvester element [7]. Some others imply ad-
ditional active circuitry and are based on feedback functionalities
added to the power management electronic part [8]. Alternatively,
a number of non-linear devices have been proposed to maximise
harvested energy over a wide range of excitation frequencies [10],
even in the case of random vibration sources characterized by a
wideband spectral density [9]. On the other hand, the intensive
developments are directed to miniaturization [11]. Using electri-
cal and magnetic interactions, the researchers were able to scale
down the cantilever beams with additional charges (electrical or
magnetic dipoles) [12,13]. Simultaneously, recent material develop-
ments indicate that structured nanowires collected in the arrays
could be promising [14,15].

Among them an important group is based on bistable config-
urations [12,16-19]. For a large enough excitation amplitude they
obtained a cross barrier dynamics and, consequently, a large elec-
trical power output. Furthermore, the device can work efficiently in
fairly lower frequency ambient vibration conditions [17,19]. In the
present paper we continue this direction of studies using a small
scale approach.

Our model is based on a recent proposal [12], which is charac-
terized by an additional horizontal shift a of the cantilever (Fig. 1)
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with respect to the frame. This shift brakes the left-right reflecting
symmetry of the potential.

After defining the displacement of the cantilever free end by x
(Fig. 1), the total potential is following (Fig. 2a):

V =kx?/2 + Kq?/v/ (x — a)? + d2. (1)

The system parameters where taken from [12] and a= 0.6 pm and
d=3 pm. The stable (x;, x;) and unstable (xy) equilibrium points
are defined for the corresponding potential mimima and maxi-
mum:

dv(x)
dx

0 (2)

X1=-27x10"°%m, x,=3.0x10°m
and xp = 9.7 x 1077 m. (3)
The equations of motion can be written:

X=v,
dv

my = & Bv+ focos(wt), (4)

where m, 8, fy and w are the reduced modal mas, damping coeffi-
cient, amplitude and frequency of excitation.

2. Homoclinic orbits and Melnikov criterion

Considering small perturbations (e-small parameter) to the
hamiltonian system the equations read

X=1,
dv
dx
For € =0 one can obtain homoclinic orbits - solutions stating
and finishing at the saddle point for time t — 4oo as the homo-
clinic orbit [x*(t), v*(t)] ploted in Fig. 2b.
To examine the escape phenomenon we define the Melnikov
[20-22] function as:

my = —— — e€Bv+ € fycos(wt), (5)

M(to) =

+o0
| v ©cos @b - pr @] (6)
where tg is the time-like parameter to be chosen to minimize the
function. Note that M(ty) is proportional to perturbed stable and
unstable manifolds with respect to the saddle point xy (Eq. (3)).
Crossing of such stable and unstable manifold implies a homoclinc
bifurcation. M(ty) has a meaning of the distance d between stable
and unstable manifolds (see Fig. 3).

Consequently, a condition for a global homoclinic transition,
corresponding to a horseshoe type, can be written as [20]:

oM(to)
dto

\/M(to) =0 and #0. (7)


http://dx.doi.org/10.1016/j.chaos.2017.03.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.03.048&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2017.03.048

86 Letter to the editor/Chaos, Solitons and Fractals 99 (2017) 85-90

Frame
l «— Cantilever
dI q R

Fig. 1. Scheme of the experimental system after Ref. [12]. A V-shaped cantilever
(top) (I = 200 pm; d from 2.5pm to 10 um) and a counter electrode (bottom) are
permanent and locally charged with g, at their free ends and separated by a dis-
tance +/d2 + a2. In the studied case for the charge and reduced modal mass were
used g =1.1 x 10-¥C and m = 1.0 x 10" kg, respectively.

Table 1
Resonator signal output in terms of corresponding variance.

Case  Variance of displacement  Variance of velocity

(nm) (mm/s)*
(a) 8.94 1.70
(b) 175 0.18
(c) 1.51 134
(d) 9.65 1.70
(e) 9.02 2.00
(f) 7.44 2.00

The border curve distinguishing the single well and cross well
oscillation regions for two homoclinic orbits are present in Fig. 2c.
The region of system parameters for single well solutions [22] are
below both curves (blue and red) denoting the escape criterion for
left and right hand side potential wells (Fig. 2a), respectively.

3. Simulation results: phase portraits and corresponding time
series

One of the standard methods of identification of nonlinear dy-
namics is the phase portrait and Poincare map [23]. Fig. 4 shows
the portraits of six selected simulations corresponding to different
choices of excitation amplitude and frequency. The corresponding
time series of displacement are shown in Fig. 5.

By changing the amplitude (see Fig. 4b and e or 4 c and f) for a
given frequency of excitation, we observe the transition from single
well to cross well oscillations. In case of low frequency (see Fig. 4a
and b) the oscillations are already extended to both potential wells.
Interestingly, Fig. 4f implies chaotic vibrations. This is clear from
the observation of phase trajectories which are closed in Fig. 4a-
e and open in Fig. 4f. Additional indication can be made from the
Poincare (stroboscopic) points which are singular and limited in
Fig. 4a-e, while from Fig. 4f the distribution is extended into a
large region of phase space. Displacement and variance outputs of
this micro-mechanical resonator are presented in Table 1. Note that
the displacement indicate more significant difference caused by
transition from single to cross-well oscillations (see cases b and e
or c and f). This could imply the possible application to energy har-
vesting by using displacement sensitive transducer as piezoelectric
or electrostatic one. The displacement time series (Fig. 5) of the
corresponding cases confirm the above observations.

Finally, the frequency spectra are presented in Fig. 6a-f. As ex-
pected, the forcing frequency and corresponding higher harmon-
ics are clearly visible as high peaks in all the cases. This is due
to nonlinearities in the system. Note that the Fourier spectra are
composed of peaks and also filled space between them for a non-
periodic case (Fig. 6f) or have just discrete peak structures for the
periodic cases (see Fig. 6a-e).
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Fig. 2. (color online) Potential shape with the saddle point (a), homoclinic orbits
(b), results from Melnikov criterion (c) — above the critical curve there is an escape
from the potential well, blue and red colours denote escape criterion for left and
right potential wells, respectively. x and v defines the displacement and velocity of
the cantilever free end (Fig. 1), w is the excitation frequency. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

4. Multi scale entropy analyses

To improve understanding of the behaviour of complex sys-
tems that manifest themselves, sample entropy analysis becomes
increasingly popular [19]. This method provides, for measured
signals, a relative level of complexity of finite length time se-
ries. The concept of Multi-Scale Entropy (MSE) is based on the
coarse-graining procedure that uses a coarse-grained time series,
as an average of the original data points within non-overlapping
windows by increasing the scale factor t according to the
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