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1. Introduction 

Energy harvesting from ambient mechanical vibrations is im- 

portant for remote electronic devices to fully achieve their en- 

ergy autonomy [1–4] . Cordless and wireless sensor systems are 

desirable, and this can only be accomplished by using batteries 

and/or harvested energy. Vibration energy harvesting (VEH) is a 

useful technology for those modern electronic applications, as the 

energy captured from the ambient can be used directly or used 

recycled to, at least, recharge batteries or other storage devices, 

which enhances battery life and, consequently, to extend the de- 

vice autonomy in terms of time between recharges [1] . Earlier re- 

sults were obtained by using cantilever beams with piezoelectric, 

electrostatic, or electromagnetic coupling [5] . In a simplified case, 

the mono frequency excitation provided by narrow-band energy 

sources is engaged leading to resonance-based energy harvesting 

[5,6] . Therefore, the resonance frequency of the energy harvesting 

device must be tuned to the characteristic frequency of the avail- 

able ambient energy source since, in most of the cases, this fre- 

quency is not well determined or it can be time varying. In or- 

der to implement such a requirement, several self-tuning strategies 

have been developed up to now. Some of them consist on pas- 

sive solutions mechanically achieved through special geometries 

of the transducer harvester element [7] . Some others imply ad- 

ditional active circuitry and are based on feedback functionalities 

added to the power management electronic part [8] . Alternatively, 

a number of non-linear devices have been proposed to maximise 

harvested energy over a wide range of excitation frequencies [10] , 

even in the case of random vibration sources characterized by a 

wideband spectral density [9] . On the other hand, the intensive 

developments are directed to miniaturization [11] . Using electri- 

cal and magnetic interactions, the researchers were able to scale 

down the cantilever beams with additional charges (electrical or 

magnetic dipoles) [12,13] . Simultaneously, recent material develop- 

ments indicate that structured nanowires collected in the arrays 

could be promising [14,15] . 

Among them an important group is based on bistable config- 

urations [12,16–19] . For a large enough excitation amplitude they 

obtained a cross barrier dynamics and, consequently, a large elec- 

trical power output. Furthermore, the device can work efficiently in 

fairly lower frequency ambient vibration conditions [17,19] . In the 

present paper we continue this direction of studies using a small 

scale approach. 

Our model is based on a recent proposal [12] , which is charac- 

terized by an additional horizontal shift a of the cantilever ( Fig. 1 ) 

with respect to the frame. This shift brakes the left-right reflecting 

symmetry of the potential. 

After defining the displacement of the cantilever free end by x 

( Fig. 1 ), the total potential is following ( Fig. 2 a): 

V = k s x 
2 / 2 + Kq 2 / 

√ 

(x − a ) 2 + d 2 . (1) 

The system parameters where taken from [12] and a = 0.6 μm and 

d = 3 μm. The stable ( x 1 , x 2 ) and unstable ( x 0 ) equilibrium points 

are defined for the corresponding potential mimima and maxi- 

mum: 

dV (x ) 

dx 
= 0 (2) 

x 1 = −2 . 7 × 10 

−6 m , x 2 = 3 . 0 × 10 

−6 m 

and x 0 = 9 . 7 × 10 

−7 m . (3) 

The equations of motion can be written: 

˙ x = v , 

m ̇

 v = −d V 

d x 
− βv + f 0 cos (ωt) , (4) 

where m, β , f 0 and ω are the reduced modal mas, damping coeffi- 

cient, amplitude and frequency of excitation. 

2. Homoclinic orbits and Melnikov criterion 

Considering small perturbations ( ε-small parameter) to the 

hamiltonian system the equations read 

˙ x = v , 

m ̇

 v = −d V 

d x 
− εβv + ε f 0 cos (ωt) , (5) 

For ε = 0 one can obtain homoclinic orbits - solutions stating 

and finishing at the saddle point for time t → ±∞ as the homo- 

clinic orbit [ x ∗( t ), v ∗( t )] ploted in Fig. 2 b. 

To examine the escape phenomenon we define the Melnikov 

[20–22] function as: 

M ( t 0 ) = 

∣∣∣∣
∫ + ∞ 

−∞ 

v ∗( t ) ( f 0 cos ( ωt ) − βv ∗( t ) ) dt 

∣∣∣∣. (6) 

where t 0 is the time-like parameter to be chosen to minimize the 

function. Note that M ( t 0 ) is proportional to perturbed stable and 

unstable manifolds with respect to the saddle point x 0 ( Eq. (3) ). 

Crossing of such stable and unstable manifold implies a homoclinc 

bifurcation. M ( t 0 ) has a meaning of the distance d between stable 

and unstable manifolds (see Fig. 3 ). 

Consequently, a condition for a global homoclinic transition, 

corresponding to a horseshoe type, can be written as [20] : 

∨ 

t 0 

M(t 0 ) = 0 and 

∂M(t 0 ) 

∂t 0 
� = 0 . (7) 
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Fig. 1. Scheme of the experimental system after Ref. [12] . A V-shaped cantilever 

(top) ( l = 200 μm; d from 2.5 μm to 10 μm) and a counter electrode (bottom) are 

permanent and locally charged with q , at their free ends and separated by a dis- 

tance 
√ 

d 2 + a 2 . In the studied case for the charge and reduced modal mass were 

used q = 1 . 1 × 10 −14 C and m = 1 . 0 × 10 −11 kg, respectively. 

Table 1 

Resonator signal output in terms of corresponding variance. 

Case Variance of displacement Variance of velocity 

(μm) 2 (mm/s) 2 

(a) 8.94 1.70 

(b) 1.75 0.18 

(c) 1.51 1.34 

(d) 9.65 1.70 

(e) 9.02 2.00 

(f) 7.44 2.00 

The border curve distinguishing the single well and cross well 

oscillation regions for two homoclinic orbits are present in Fig. 2 c. 

The region of system parameters for single well solutions [22] are 

below both curves (blue and red) denoting the escape criterion for 

left and right hand side potential wells ( Fig. 2 a), respectively. 

3. Simulation results: phase portraits and corresponding time 

series 

One of the standard methods of identification of nonlinear dy- 

namics is the phase portrait and Poincare map [23] . Fig. 4 shows 

the portraits of six selected simulations corresponding to different 

choices of excitation amplitude and frequency. The corresponding 

time series of displacement are shown in Fig. 5 . 

By changing the amplitude (see Fig. 4 b and e or 4 c and f) for a 

given frequency of excitation, we observe the transition from single 

well to cross well oscillations. In case of low frequency (see Fig. 4 a 

and b) the oscillations are already extended to both potential wells. 

Interestingly, Fig. 4 f implies chaotic vibrations. This is clear from 

the observation of phase trajectories which are closed in Fig. 4 a–

e and open in Fig. 4 f. Additional indication can be made from the 

Poincare (stroboscopic) points which are singular and limited in 

Fig. 4 a–e, while from Fig. 4 f the distribution is extended into a 

large region of phase space. Displacement and variance outputs of 

this micro-mechanical resonator are presented in Table 1 . Note that 

the displacement indicate more significant difference caused by 

transition from single to cross-well oscillations (see cases b and e 

or c and f). This could imply the possible application to energy har- 

vesting by using displacement sensitive transducer as piezoelectric 

or electrostatic one. The displacement time series ( Fig. 5 ) of the 

corresponding cases confirm the above observations. 

Finally, the frequency spectra are presented in Fig. 6 a–f. As ex- 

pected, the forcing frequency and corresponding higher harmon- 

ics are clearly visible as high peaks in all the cases. This is due 

to nonlinearities in the system. Note that the Fourier spectra are 

composed of peaks and also filled space between them for a non- 

periodic case ( Fig. 6 f) or have just discrete peak structures for the 

periodic cases (see Fig. 6 a–e). 

Fig. 2. (color online) Potential shape with the saddle point (a), homoclinic orbits 

(b), results from Melnikov criterion (c) – above the critical curve there is an escape 

from the potential well, blue and red colours denote escape criterion for left and 

right potential wells, respectively. x and v defines the displacement and velocity of 

the cantilever free end ( Fig. 1 ), ω is the excitation frequency. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

4. Multi scale entropy analyses 

To improve understanding of the behaviour of complex sys- 

tems that manifest themselves, sample entropy analysis becomes 

increasingly popular [19] . This method provides, for measured 

signals, a relative level of complexity of finite length time se- 

ries. The concept of Multi-Scale Entropy (MSE) is based on the 

coarse-graining procedure that uses a coarse-grained time series, 

as an average of the original data points within non-overlapping 

windows by increasing the scale factor τ according to the 



Download English Version:

https://daneshyari.com/en/article/5499660

Download Persian Version:

https://daneshyari.com/article/5499660

Daneshyari.com

https://daneshyari.com/en/article/5499660
https://daneshyari.com/article/5499660
https://daneshyari.com

