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a b s t r a c t 

It is shown that members of a class (of current interest with many applications) of non-dissipative 

reaction-diffusion partial differential equations with local nonlinearity can have an infinite number of 

different unstable solutions traveling along an axis of the space variable with varying speeds, traveling 

impulses and also an infinite number of different states of spatio-temporal (diffusion) chaos. These solu- 

tions are generated by cascades of bifurcations governed by the corresponding steady states. The behavior 

of these solutions is analyzed in detail and, as an example, it is explained how space-time chaos can arise. 

Results of the same type are also obtained in the case of a nonlocal nonlinearity. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nonlinear reaction-diffusion equations are parabolic, semilinear 

partial differential equations (in one or more space variables) 

that have proven to be useful models for a wide variety of im- 

portant applications. Notable examples include the Fisher and 

Fisher–Kolmogorov equations for growth-diffusion phenomena 

occurring in (genetic) population dynamics, the Hodgkin–Huxley 

and FitzHugh–Nagumo equations for modeling neuron spiking, 

the Belousov–Zhabotinsky chemical reactions, modeling Rayleigh–

Benard convection, and the Zeldovich equation for modeling 

combustion phenomena. Moreover, reaction-diffusion equations 

are often used as a prototype for pattern formation and are 

considered by many experts to be an essential basis for biological 
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morphogenesis. For further information on applications, the reader 

is referred to such sources as [5,14,23] . 

There is great interest in nonlinear reaction-diffusion equations 

from a purely mathematical perspective as well. The equations 

comprise an infinite-dimensional dynamical systems that exhibit 

an amazing spectrum of solution phenomena including periodic 

traveling waves, dissipative solitons, spiral waves, target patterns, 

bifurcation cascades, chaos and long-time dynamical configura- 

tions of great complexity. Of particular interest is characterization 

of the long-time behavior of the solutions, which concerns the 

dynamical regimes that the system may settle into as the time t → 

∞ . If the system is dissipative, there is typically a global strange 

attractor, but things are especially challenging mathematically 

when the system is non-dissipative inasmuch as the long-time 

dynamics can be much more diverse and complicated than in 

the dissipative case. Considerable progress has been made in 

non-dissipative long-time reaction-diffusion dynamics, but many 

open problems remain. In this paper, we obtain new results on the 

long-time dynamics of two classes of non-dissipative nonlinear 

reaction-diffusion equations, used for mathematical models of 

many interesting phenomena, which both extend and provide 
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additional mathematical details, especially regarding chaotic 

transitions, for systems analyzed in the literature. 

We consider classes of reaction-diffusion equations with nonlo- 

cal and local nonlinearities; namely,the following problems 

∂u 

∂t 
− �u + g ( t, x, u ) = 0 , ( t, x ) ∈ ( 0 , T ) × �, (1.1) 

u ( 0 , x ) = u 0 ( x ) ∈ W 

1 , 2 ( �) , x ∈ �, T > 0 (1.2) 

u 

∣∣
[ 0 ,T ) ×∂� = 0 , � ⊆ R 

n , n ≥ 1 , ∂� ∈ Lip (1.3) 

where � ⊆ R 

n is an open domain, the boundary ∂� is Lipschitz, g : 

L p 1 ((0 , T ) × �) −→ L p 2 ((0 , T ) × �) is a nonlinear operator and p 1 , 

p 2 > 1 are fixed numbers. We assume that g ( t, x, u ) is represented 

in one of the following forms: 

( α) : g ( t, x, u ) := a ‖ 

u ‖ 

ρ
2 

u + h ( t, x ) , or 

( β) : g ( t, x, u ) := a ( t, x ) | u | ρu + h ( t, x ) , (1.4) 

where ‖ · ‖ 2 denotes the norm in L 2 ( �), h ( t, x ) and u 0 ( x ) are given 

functions and ρ > 0, a > 0 are given constants. The problem posed 

above is investigated for the both cases separately: in the case of 

a nonlocal nonlinearity (i.e. (4( α))), and in the case of a local non- 

linearity (i.e. (4( β))). 

We shall show that the partial differential equation (1.1) in the 

case of the nonlocal nonlinearity (i.e. the case (4( α))) can pos- 

sess an infinite number of different unstable solutions. In the local 

case (4( β)), which differs markedly from the nonlocal case (4( α)), 

the problem allows an infinite number of different both unsta- 

ble solutions, traveling along the space axis with arbitrary speeds, 

and traveling impulses, as well as an infinite number of different 

spatio-temporal (diffusion) chaotic states. These solutions are gen- 

erated by cascades of static bifurcations of the evolution equation, 

which were studied, in particular, in [22] . As Ya. Sinai asserts in 

[21] “... the future of the chaos theory will be connected with new 

phenomena in nonlinear PDEs and other infinite-dimensional dy- 

namical systems, where we can encounter absolutely unexpected 

phenomena”. 

The dynamics becomes much more complicated in the case 

of dynamical systems generated by partial differential equa- 

tions (PDEs) largely due to the formation of spatially chaotic 

patterns. More generally, such systems may display interactions 

between spatially and temporally chaotic modes. One of the most 

challenging problems in this field is that of turbulence which 

displays statistical behavior in temporal and spatial regimes, 

whose correlations decay with distance in space and time, see 

e.g. [10,16,29] . It should be pointed out that there have been 

many investigations on this and related topics (see, for example, 

[1–4,6–9,12,17–19,21,29,30] and the references therein). 

In what follows we study the Cauchy problem for an equa- 

tion of the non-dissipative reaction-diffusion equation with an 

infinite-dimensional solution space; in particular, the correspond- 

ing steady-state problem has also infinitely many solutions. We 

show that the trajectories of solutions in the phase space depend 

on the choice of starting point on a sphere of the initial values. 

To be more precise, the initial value determines the long-time so- 

lution behavior, depending on the related Lyapunov exponent of 

the trajectory in phase space. The choice of starting point allows 

to determine where the solution of the problem will end up. If the 

limiting set is not one-dimensional, more complications can arise, 

including even the existence of absorbing manifolds. Moreover, if 

such an absorbing manifolds exists, its associated dynamics tends 

to be chaotic. We study this type of dynamic behavior and explain 

how space-time chaos can arise. 

2. Existence in the autonomous case 

2.1. The nonhomogeneous case 

We begin by studying the problem in the case (4( α)) when 

g(t, x, u ) := a ‖ u ‖ ρ
2 

u + h (x ) , i.e. we consider the problem 

∂u 

∂t 
− �u − a ‖ 

u ‖ 

ρ
H 

u = h ( x ) , ( t, x ) ∈ ( 0 , T ) × �, (2.1) 

u ( 0 , x ) = u 0 ( x ) ∈ W 

1 , 2 
0 ( �) := H 

1 
0 ( �) , u 

∣∣
[ 0 ,T ) ×∂� = 0 . (2.2) 

From (2.1) we compute that 

1 

2 

d 

dt 
‖ 

u ( t ) ‖ 

2 
2 + ‖ 

∇u ( t ) ‖ 

2 
2 − a ‖ 

u ( t ) ‖ 

ρ+2 
2 

= 〈 h, u 〉 , 
‖ 

u ( 0 ) ‖ 

2 
2 = ‖ 

u 0 ‖ 

2 
2 (2.3) 

which entails the inequalities 

d 

dt 
‖ 

u ( t ) ‖ 

2 
2 ≤ −‖ 

∇u ( t ) ‖ 

2 
2 + 2 a ‖ 

u ( t ) ‖ 

ρ+2 
2 

+ ‖ 

h ‖ 

2 
H −1 

≤ −λ1 || u || 2 2 ) + 2 a ‖ 

u ( t ) ‖ 

ρ+2 
2 

+ ‖ 

h ‖ 

2 
H −1 , 

where ‖ u (t) ‖ 
H 1 

0 
:= ‖∇u (t) ‖ 2 and λ1 > 0 is the first eigenvalue of 

the Laplace operator −� : H 

1 
0 
(�) −→ H 

−1 (�) . 

Now we consider the solvability of this problem, which 

will be analyzed making use of the general results from [24] . 

We take u 0 ∈ B 
H 1 

0 
r 0 

(0) , where r 0 < λ1 , and study the opera- 

tor A generated by the problem: it acts, by definition, from 

X := W 

1 , 2 (0 , T ; H 

−1 (�)) ∩ L 2 (0 , T ; H 

1 
0 
(�)) ∩ { u (t, x ) | u (0 , x ) = .u 0 } to 

L 2 (0 , T ; H 

−1 (�)) . Next, we study the image of this operator A on 

the ball B X r (0) for r ∈ (0, r 0 ); more precisely, we define a subset M 

of the space L 2 (0 , T ; H 

−1 (�)) and a number r ∈ (0, r 0 ), such that 

A (B X r (0)) ⊆ M ⊂ L 2 (0 , T ; H 

−1 (�)) . In other words, we shall show 

that the problem is solvable in B X r 0 
(0) for any (h, u 0 ) ∈ M × B 

H 1 
0 

r 0 
(0) . 

A detailed investigation requires some preliminary estimates. 

So, let u 0 ∈ B 
H 1 

0 
r 0 

(0) for some number r 0 < λ1 ; then we obtain 

d 

dt 
‖ 

u ( t ) ‖ 

2 
2 ≤ −λ1 ‖ 

u ( t ) ‖ 

2 
2 + 2 a ‖ 

u ( t ) ‖ 

ρ+2 
2 

+ ‖ 

h ‖ 

2 
H −1 . 

Consequently, it is enough to study the following initial problem 

d ( y + c 1 ) /dt + λ1 ( y + c 1 ) ≤ 2 a ( y + c 1 ) 
ρ1 +1 

, y ( 0 ) = ‖ 

u 0 ‖ 

2 
H 1 

0 
, 

(2.4) 

where y (t) := ‖ u (t) ‖ 2 2 , ρ1 = 

ρ
2 . Assume that the constant c 1 is cho- 

sen in such a way that the inequality 

2 a ( y + c 1 ) 
ρ1 +1 − λ1 c 1 ≥ ‖ 

h ‖ 

2 
H −1 + 2 ay ρ1 +1 

holds. 

Whence, one finds that 

z ′ − λ1 ρ1 z ≥ −aρ, z = ( y + c 1 ) 
−ρ1 , z ( 0 ) = 

(‖ 

u 0 ‖ 

2 
2 + c 1 

)−ρ1 
, 

which gives 

( y + c 1 ) 
−ρ1 ≥

(‖ 

u 0 ‖ 

2 
2 + c 1 

)−ρ1 
e λ1 ρ1 t + 

2 a 

λ1 

− 2 a 

λ1 

e λ1 ρ1 t 

implying that 

‖ 

u ( t ) ‖ 

2 
2 + c 1 ≤ e −λ1 t 

(‖ 

u 0 ‖ 

2 
2 + c 1 

)
×

[ 
1 − 2 a 

λ1 

(‖ 

u 0 ‖ 

2 
2 + c 1 

)ρ1 
(
1 − e −λ1 ρ1 t 

)] ρ−1 
1 

. (2.5) 

Therefore, we see from (2.5) that the functions u 0 and h should 

be selected from balls of respective spaces so as to satisfy the 

inequality 

1 − 2 a 

λ1 

(‖ 

u 0 ‖ 

2 
2 + c 1 

)ρ1 
> 0 �⇒ ‖ 

u 0 ‖ 

2 
2 + c 1 < 

∣∣∣∣λ1 

2 a 

∣∣∣∣ 2 
ρ

. (2.6) 
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