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a b s t r a c t 

This paper demonstrates the existence of Feigenbaum’s constants in reverse bifurcation for fractional- 

order Rössler system. First, the numerical algorithm of fractional-order Rössler system is presented. Then, 

the definition of Feigenbaum’s constants in reverse bifurcation is provided. Third, in order to observe the 

effect of fractional-order to Feigenbaum’s constants in reverse bifurcation, a series of bifurcation diagrams 

are computed. The Feigenbaum’s constants in reverse bifurcation are measured and the error percentage 

in fractional-order Rössler system is presented. The simulation results show that Feigenbaum’s constants 

exist in reverse bifurcation for fractional-order Rössler system. Especially, the Feigenbaum’s constants still 

exist in the periodic windows. A summary on previous others’ works about Feigenbaum’s constants is 

proposed. This paper draw a conclusion that the constants are universal in both period-doubling bifurca- 

tion and reverse bifurcation for both integer and fractional-order system. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional calculus has appeared more than three hundred years 

ago, nevertheless, the evolution in studying fractional calculus 

takes place in recent years. Many interesting dynamical behaviors 

have been observed in a number of fractional-order nonlinear sys- 

tems, such as fractional-order Chua’s circuit [1–2] , fractional-order 

Chen system [3–4] , fractional-order jerk model [5] , fractional-order 

cellular neural networks [6] and fractional-order Lorenz system [7–

9] . The fractional-order nonlinear systems have attracted more and 

more researchers to study them [10–28] . 

The fact that Feigenbaum’s constants exist in period-doubling 

bifurcation was discovered by Feigenbaum in 1975 [29] . It has been 

discovered that Feigenbaum’s constants exist in many integer sys- 

tems [30–31] . In 1980, Lorenz [32] put forward “reverse bifurca- 

tion”. Compared with the period-doubling bifurcation, reverse bi- 

furcation means 2 i-1 chaotic bands split into 2 i chaotic bands (We 

introduce reverse bifurcation in detail in Section 3.1 ). Huberman 

and Rudnick [33] pointed out that Feigenbaum’s constants are ap- 

plied in reverse bifurcation as well, which was confirmed by Shau- 

Jin Chang and Jon Wright [34] . As for fractional-order chaotic sys- 

tems, there are few contributions on Feigenbaum’s constants. Chen 

et al [35] measured the Feigenbaum’s constants in a continuous 
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time fractional-order system; Ho et al [36] measured the Feigen- 

baum’s constants in fractional degree Yin–Yang Henon map. 

However, few published papers report Feigenbaum’s constants 

in reverse bifurcation of fractional-order nonlinear system to our 

best knowledge. This paper studies Feigenbaum’s constants in re- 

verse bifurcation for fractional-order system in detail. The simula- 

tion results show that Feigenbaum’s constants exist in reverse bi- 

furcation for fractional-order Rössler system. This discovery is in- 

teresting in the framework of fractional-order chaotic systems. It 

may offer a new way to study the deep dynamics of fractional- 

order systems. Meanwhile, it is a bridge between integer-order sys- 

tem and fractional-order system. 

Motivated by the above discussions, there shows two advan- 

tages which make our approach more attractive compared with the 

prior works. First, we study the Feigenbaum’s constants in reverse 

bifurcation in fractional-order Rössler system, which is a pioneer 

work. More specially, we measure the Feigenbaum’s constants in 

reverse bifurcation even in the periodic windows. Second, we do a 

conclusive summary on the scaling law discovered by Feigenbaum 

both in period-doubling bifurcation and in reverse bifurcation for 

both integer-order system and fractional-order system. 

This paper is organized by following: Section 2 presents the nu- 

merical algorithm of the fractional-order Rössler system. In Section 

3 , we present the definition of Feigenbaum’s constants in reverse 

bifurcation, measure the universal constants and do a conclusive 

summary on Feigenbaum’s constants. The conclusion is drawn in 

Section 4 . 
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2. Numerical algorithm of Fractional-order Rössler system 

The Rössler system is ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

dx 

dt 
= −y − z 

dy 

dt 
= x + ay 

dz 

d t 
= b + z(x − c) 

, (1) 

in which x, y, z are the state variables and a, b, c are the parame- 

ters. Thus, fractional-order Rössler system can be defined as { 

D 

q 1 x = −y − z 
D 

q 2 y = x + ay 
D 

q 3 z = b + z(x − c) 
. (2) 

In above equation, D is the Caputo fractional derivative operator 

of order [37] , which is defined as 

D 

q 
∗y (x ) = J m −q y (m ) (x ) , q > 0 (3) 

where m = � q � , and y ( m ) is the ordinary m th derivative of y . 

J θ z(x ) = 

1 

�(θ ) 

∫ x 

0 

(x − t) 
θ−1 

z( t) dt (4) 

is the Riemann–Liouville integral operator with order θ> 0, and 

�( x ) is the Euler’s gamma function. 

For the numerical algorithm of a fractional-order system, in 

this paper, the Adams-Bashforth-Moulton type predictor-corrector 

scheme is applied. This method, as a time domain approach, is 

more precise and effective, compared with the frequency domain 

approach. The Adams-Bashforth-Moulton type predictor-corrector 

scheme is based on the following fractional differential equation 

D 

q 
t y (t) = f (y (t ) , t ) , y (k ) (0) = y k 0 , k = 0 , 1 , . . . , m − 1 (5) 

which is equivalent to the Volterra integral equation 

y ( t ) = 

� q � −1 ∑ 

k =0 

y ( k ) 
0 

t k 

k ! 
+ 

1 

�( q ) 

∫ t 

0 

( t − τ ) 
q −1 

f ( τ, y (τ ) ) dτ. (6) 

Discretizing the Volterra equation by setting t n = nh (n = 

0 , 1 , . . . , N) and h = T sim 

/N, we can obtain 

y h ( t n +1 ) = 

m −1 ∑ 

k =0 

t k n +1 

k ! 
y (k ) 

0 
+ 

h 

q 

�(q + 2) 
f ( t n +1 , y 

p 

h 
( t n +1 )) 

+ 

h 

q 

�(q + 2) 

n ∑ 

j=0 

a j,n +1 f ( t j , y n ( t j )) , (7) 

where 

a j,b+1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

q +1 − (n − q ) (n + 1) q , j = 0 , 

(n − j + 2) q +1 + (n − j) q +1 

−2 (n − j + 1) q +1 , 1 ≤ j ≤ n, 

1 , j = n + 1 . 

. (8) 

The predictor y 
p 

h 
( t n +1 ) is given by 

y p 
h 
( t n +1 ) = 

m −1 ∑ 

k =0 

t k n +1 

k ! 
y k 0 + 

1 

�(q ) 

n ∑ 

j=0 

b j,n +1 f ( t j , y n ( t j )) , (9) 

in which 

b j,n +1 = 

h 

q 

q 
( ( n + 1 − j) q − (n − j) q ) . (10) 

The error estimate is max i = 0 , 1 ,…,N | y (t i )- y h (t i )| = O ( h p ), in which 

p = min(2,1 + q ). 

Employing the Adams-Bashforth-Moulton scheme, the 
fractional-order Rössler system can be presented as follows: 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x n +1 = x 0 + 

h q 1 

�( q 1 + 2) 

{ 

[ −y p 
n +1 

−z p 
n +1 

] + 

n ∑ 

j=0 

a 1 , j,n +1 ( − y j − z j ) 

} 

y n +1 = y 0 + 

h q 2 

�( q 2 + 2) 

{ 

[ x p 
n +1 

+ ay p 
n +1 

] + 

n ∑ 

j=0 

a 2 , j,n +1 ( x j + a y j ) 

} 

z n +1 = z 0 + 

h q 3 

�( q 3 + 2) 

{ 

b + z p 
n +1 

( x p 
n +1 

− c ) + 

n ∑ 

j=0 

a 3 , j,n +1 ( b + z j ( x j − c )) 

} 

(11) 

in which ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

x p 
n +1 

= x 0 + 

1 
�( q 1 ) 

n ∑ 

j=0 

b 1 , j,n +1 ( − y j − z j ) 

y p 
n +1 

= y 0 + 

1 
�( q 2 ) 

n ∑ 

j=0 

b 2 , j,n +1 ( x j + a y j ) 

z p 
n +1 

= z 0 + 

1 
�( q 3 ) 

n ∑ 

j=0 

b 3 , j,n +1 ( b + z j ( x j − c )) 

, (12) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

b 1 , j,n +1 = 

h 

q 1 

q 1 
(( n − j + 1 ) q 1 − ( n − j) q 1 ) , 0 ≤ j ≤ n 

b 2 , j,n +1 = 

h 

q 2 

q 2 
(( n − j + 1 ) q 2 − ( n − j ) q 2 ) , 0 ≤ j ≤ n 

b 3 , j,n +1 = 

h 

q 3 

q 3 
(( n − j + 1 ) q 3 − ( n − j ) q 3 ) , 0 ≤ j ≤ n 

(13) 

and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

a 1 , j,n +1 = 

{ 

n 

q 1 − ( n − q 1 )( n + 1 ) q 1 j = 0 

( n − j + 2) q 1 +1 + ( n − j ) q 1 +1 

−2( n − j + 1 ) q 1 +1 0 ≤ j ≤ n 

a 2 , j,n +1 = 

{ 

n 

q 2 − ( n − q 2 )( n + 1 ) q 2 j = 0 

( n − j + 2) q 2 +1 + ( n − j ) q 2 +1 

−2( n − j + 1 ) q 2 +1 0 ≤ j ≤ n 

a 3 , j,n +1 = 

{ 

n 

q 3 − ( n − q 3 )( n + 1 ) q 3 j = 0 

( n − j + 2) q 3 +1 + ( n − j ) q 3 +1 

−2( n − j + 1 ) q 3 +1 0 ≤ j ≤ n 

. (14) 

3. Feigenbaum’s constants in reverse bifurcation of 

fractional-order Rössler system 

In this section, we will focus on the Feigenbaum’s constants in 

reverse bifurcation of fractional-order Rössler system. At first, the 

definition of Feigenbaum’s constants in reverse bifurcation will be 

elaborated explicitly. Next, we will obtain the Feigenbaum’s con- 

stants in reverse bifurcation and the error percentage by analyz- 

ing a series of bifurcation diagrams of integer and fractional-order 

Rössler system. Finally, we do a summary about Feigenbaum’s con- 

stants. 

3.1. Definition of Feigenbaum’s constants in reverse bifurcation 

( i ) Feigenbaum’s constants in period-doubling bifurcation. 

The first and the second Feigenbaum’s constants are defined as 

δ = lim 

n →∞ 

a n +1 − a n 

a n +2 − a n +1 

(15) 

and 

| α| = 

∣∣∣∣ �M x ι

�M x ι+1 

∣∣∣∣, (16) 

respectively, where a n is the value of the parameter at the n th 

period-doubling bifurcation point; | �M x i | is the width of the 

widest bifurcation fork of the i th period-doubling bifurcation [29] . 

More specifically, δ= 4.6692016…, | α| = 2.5029078…. 
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