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By means of expressing volumes in phase space in terms of traces of quantum operators, a relationship 

between the poles of the scattering matrix and the Lyapunov exponents in a non Hermitian quantum 

dynamics, is presented. We illustrate the formalism by characterizing the behavior of the Gamow model 

whose dissipative decay time, measured by its decoherence time, is found to be inversely proportional to 

the Lyapunov exponents of the unstable periodic orbits. The results are in agreement with those obtained 

by means of the semiclassical periodic–orbit approach in quantum resonances theory but using a simpler 

mathematics. 
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1. Introduction 

The interest in the study of non Hermitian Hamiltonians is re- 

lated with the interpretation of phenomena such as nuclear res- 

onances, dissipation, relaxation of nonequilibrium states, typical 

of open systems. In scattering systems one can consider quantum 

resonances, called “quasi-stationary states” or “Gamow states”, in- 

stead of scattering solutions [1–5] . Gamow states play in open sys- 

tems a similar role as the eigenstates of closed systems and their 

eigenvalues are complex numbers with non zero imaginary part. 

Moreover, they characterize the unstable periodic orbits and are 

physically interpreted as particle–states transferred from the sys- 

tem to its environment. Any measurement on a open system dras- 

tically changes its properties by converting discrete energy levels 

into decaying Gamow states, which can be described by a non Her- 

mitian Hamiltonian [6–9] . In this context, the characteristic decay 

times are given by the imaginary part of the complex eigenvalues, 

i.e. the so called poles of the scattering matrix [3] . These arise as 

a result of the analytic extension of a Hamiltonian whose degen- 

eration makes the perturbation theory inapplicable [10–19] . Fur- 

thermore, non Hermitian Hamiltonians allow to describe the non- 

unitary time evolutions that appear in open quantum systems [9] . 

Properties of open quantum systems like nonequilibrium phenom- 

ena and dissipation can be characterized by the positivity of the 

Kolmogorov–Sinai entropy which, in turn, is equal to the sum of 

all positive Lyapunov exponents due to the Pesin theorem [20–23] . 

The characteristic time of these kind of processes is given by the 
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Kolmogorov–Sinai time, which provides a decay time in the phase 

space as a function of the Lyapunov exponents [24–26] . In addi- 

tion, in chaotic open quantum systems the Lyapunov exponents 

and the escape rates of classical trajectories have been character- 

ized by means of semiclassical techniques [27–30] , and also from 

the strategy of ranking chaos looking at the decay of correlations 

between states and observables [31,32] . 

The present contribution shows a novel way of obtaining Lya- 

punov exponents in terms of poles of the scattering matrix (S–

matrix) in non Hermitian Hamiltonian systems, but with a sim- 

pler mathematics than the used in the literature. As a consequence 

of this study, the following is obtained: i) a method for obtain- 

ing the part of the KS–entropy free of the escape rates in open 

quantum systems [29] , and ii) conditionally invariant measures de- 

scribing classical localization of chaotic states [30] . The dynami- 

cal indicator we choose to obtain our results is the Kolmogorov–

Sinai entropy by two reasons, mainly. The first is that due to the 

Pesin theorem and the relationship between the KS–entropy and 

the KS–time, the sum of the Lyapunov exponents can be expressed 

in terms of the KS–time which is the time that a little volume 

takes to spread throughout all the phase space [24–26] . In turn, 

with the help of the Wigner transformation the evolution of vol- 

umes in phase space can be written as quantum mean values, that 

decay according to the lifetimes given by the poles of the S–matrix. 

Thus, KS–entropy serves an intermediate tool to connect Lyapunov 

exponents with poles. Secondly, the robustness of the KS-entropy 

guarantees the validity of the results for a wide range in the initial 

conditions, as we shall see. 

Using the idea of expressing classical quantities in terms of 

traces of quantum operators as in Gomez and Castagnino [31] , 
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Gomez et al. [32] , Castagnino and Lombardi [33] , Gomez and 

Castagnino [34 , 35] , we present a relationship between the poles 

of the scattering matrix and the Lyapunov exponents in a non Her- 

mitian quantum dynamics, where the Kolmogorov–Sinai time ex- 

presses the contractions and expansions of volumes in the phase 

space along their dynamics. The paper is organized as follows. In 

Section 2 we give the preliminaries and the mathematical formal- 

ism. In Section 3 we express the Lyapunov exponents in terms of 

the poles by means of the non–unitary evolution of a little vol- 

ume element in phase space. In Section 4 we illustrate the formal- 

ism by applying it to the Gamow model. In Section 5 we discuss 

the results with regard the quantum resonances theory. Finally, in 

Section 6 some conclusions and future research directions are out- 

lined. 

2. Preliminaries 

2.1. Kolmogorov–Sinai time and Pesin theorem 

The characteristic time for a nonequilibrium process in a mixing 

dynamics is the Kolmogorov–Sinai time (KS–time) τ KS , which mea- 

sures the necessary time to take a number of initially close phase 

points to uniformly distribute over the energy surface. Moreover, 

τ KS is inversely proportional to the Kolmogorov–Sinai entropy (KS–

entropy), denoted by h KS 

τKS = 

1 

h KS 

(1) 

Another important property is the relationship between the max- 

imum Lyapunov exponent and h KS . Krylov observed that a little 

phase volume �V after a time t will be spread over a region with 

a volume �V (t) = �V exp (h KS t) where �V ( t ) is of order 1 [24,25] . 

This means that after a time 

t 0 = 

1 

h KS 

ln 

1 

�V 

(2) 

the initial phase volume �V is spread over the whole phase space. 

Consequently, one might expect that the typical relaxation times 

are proportional to 1 
h KS 

. 

On the other hand, the Pesin theorem relates the KS-entropy 

h KS with the Lyapunov exponents by means of the formula 

[20–23] 

h KS = 

∫ 
�

∑ 

σi > 0 

σi (q, p) d qd p (3) 

where � is the phase space. For the special case when the σ i are 

constant over all phase space one has 

h KS = 

∑ 

σi > 0 

σi (4) 

It should be noted the interest of the formula (3) and its physical 

meaning. Pesin theorem relates the KS-entropy, that is the average 

unpredictability of information of all possible trajectories in the 

phase space, with the exponential instability of motion. Then, the 

main content of Pesin theorem is that h KS > 0 is a sufficient condi- 

tion for the chaotic motion. Using Eqs. (1) and (4) one obtains the 

following relationship between τ KS and the Lyapunov exponents 

1 

τKS 

= 

∑ 

σi > 0 

σi (5) 

In the following sections we will use this formula in order to ob- 

tain a relationship between the Lyapunov exponents and the poles 

of the S–matrix, within the context of effective non Hermitian 

Hamiltonians. 

2.2. Wigner transformation 

We recall some properties of the Wigner transformation formal- 

ism [36–39] we will use throughout the paper. Given a quantum 

operator ˆ A the Wigner transformation W ˆ A 
: R 

2 M �→ R of ˆ A is de- 

fined by 

W ˆ A 
(q, p) = 

1 

h 

M 

∫ 
R M 

〈 q + �| ˆ A | q − �〉 e 2 i p�h̄ d� (6) 

where q, p, � ∈ R 

M . The Weyl symbol ˜ W ˆ A 
: R 

2 M �→ R of ˆ A is defined 

by ˜ W ˆ A 
(q, p) = h̄ M W ˆ B 

(q, p) where h̄ = 

h 
2 π and h is the Planck con- 

stant. In particular, for the identity operator ˆ I one has ˜ W ˆ I 
(q, p) = 

1(q, p) where 1( q, p ) is the function that is constantly equal to 1. 

One of the main properties of the Wigner transformation is the 

expression of integrals over the phase space in terms of trace of 

operators by means of [37] 

Tr ( ̂  A ̂

 B ) = 

∫ 
R 2 M 

W ˆ A 
(q, p) ̃  W ˆ B 

(q, p) d qd p (7) 

valid for all pair of operators ˆ A , ˆ B where ˆ A ̂

 B denotes the product of 
ˆ A and 

ˆ B and Tr ( . . . ) is the trace operation. Using the definition of 

the Weyl symbol it can be shown the following result that relates 

the Weyl symbols of an operator and of the same but evolved at a 

time t . The proof can be found in the Appendix. 

Lemma 2.1. Let ˜ W ˆ A 
(q, p) be the Weyl symbol of an operator ˆ A . 

Then the Weyl symbol of ˆ A (−t) = 

ˆ U 

† 
t 

ˆ A ̂

 U t is ˜ W ˆ A 
(q (t) , p(t)) where 

(q (t) , p(t)) = (T t q, T t p) and T t is the classical evolution given by 

Hamilton equations. For all t ∈ R one has ˜ W ˆ U † t 
ˆ A ̂ U t 

(q, p) = 

˜ W ˆ A 
(q (t ) , p(t )) ∀ (q, p) ∈ R 

2 (8) 

where ˆ A (−t) = 

ˆ U −t ̂  A ̂

 U 

† 
−t , 

ˆ U t = e 
−i 

ˆ H 
h̄ 

t 
is the evolution operator, and ˆ U 

† 
t 

is the Hermitian conjugate of ˆ U t . 

2.3. Scattering matrix and analytic continuations 

The motivations for the use of non Hermitian Hamiltonians 

arise naturally when modeling phenomena of nuclear physics or 

decay processes by means of scattering theory [3,9]. Mathemati- 

cally, these are obtained by the analytic dilation method [40] . For 

instance, in the context of microwave billiards it is well known that 

the spectrum is modified by the presence of the coupling antennas, 

where the quantum probability amplitude that a certain entering 

state | ψ in 〉 is scattered into an outgoing state | ψ out 〉 is given by 

the scattering matrix ˆ S 

| ψ〉 = | ψ in 〉 + 

ˆ S | ψ out 〉 (9) 

If ˆ H = 

ˆ H 0 + 

ˆ V is the total Hamiltonian of the system with 

ˆ H 0 the 

undisturbed Hamiltonian and 

ˆ V the potential of interaction, then it 

can be shown that ˆ S takes the form [3] 

ˆ S = 

ˆ 1 − 2 i ˆ W 

† 1 

E − ˆ H 0 + 

ˆ W 

ˆ W 

† 
ˆ W (10) 

where ˆ W contains the information on the coupling strengths be- 

tween the unperturbed states and the resonances, and it can be 

given in terms of the potential ˆ V . Thus, the poles of ˆ S are the 

eigenvalues of the effective non Hermitian Hamiltonian 

ˆ H 0 − i ˆ W 

ˆ W 

† (11) 

This type of effective Hamiltonian have been widely used in nu- 

clear physics [1,2] . In particular, if E 0 n is the n th eigenvalue of ˆ H 0 

then in the limiting case of small coupling strengths the eigenval- 

ues are given in first order perturbation theory by 

E n = E 0 n − i 
(

ˆ W 

ˆ W 

† 
)

nn 
= E 0 n − i 

∑ 

k 

| W nk | 2 (12) 
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