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a b s t r a c t 

In this work we consider the periodic stimulation of two and three dimensional excitable media in the 

presence of obstacles with an emphasis on cardiac dynamics. We focus our attention in the understand- 

ing of the minimum size obstacles that allow generation of spiral and scroll waves, and describe different 

mechanisms that lead to the formation of such waves. The present study might be helpful in understand- 

ing and controlling the appearance of spiral and scroll waves in the medium. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The propagation of waves in excitable media is a very impor- 

tant phenomenon to study due to its relation to health problems 

such as cardiac arrhythmias [1,2] , gradual loss of visual acuity [3] , 

seizures in neocortex [4] as well as in understanding the behavior 

of aggregating Dictyostelium discoideum amoebae [5] , giant hon- 

eybee colonies [6] , chemical reactions [7] and in the retina [8] . Un- 

der proper initial conditions, self sustained rotating waves, known 

as spiral and scroll waves in two and three dimensions, respec- 

tively, are obtained. A particular problem arises in cardiac phys- 

iology when scroll waves become unstable leading to a possible 

genesis for ventricular fibrillation [2] . 

Spiral waves have been obtained in computational models by 

stimulating periodically a medium which has non excitable obsta- 

cles [9] , by a cut wave front, cross-stimulation or the phase dis- 

tribution method [10] . Spatially coherent spiral waves can emerge 

out of uncorrelated noisy disturbances [11] and from the applica- 

tion of subthreshold perturbations with internal stochasticity [12] ; 

in this case, the waves are remarkably robust if subject to peri- 

odic forcing [13] . In chemistry, they have been obtained in the BZ 

reaction by breaking up target waves [14] . For the same reaction, 

scroll waves have been created in a two layer preparation where 

after expanding a spherical wave induced in the interface, and 
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mixing the top part obtaining a homogeneous medium, the birth 

of a scroll ring was induced [7] . Finally, in cardiac physiology spi- 

ral waves might arise due to wavefront-obstacle interactions [15] , 

due to electromechanoelectrical feedback [16] , the appearance of 

ectopic beats [17] which are originated due to abnormal calcium 

cycling [18] , by overload of calcium inside the cell [19] or by the 

inhibition of the rectifier potassium current [20] . In general, meth- 

ods of generation of scroll waves are inherited from the mecha- 

nisms for spiral waves. 

In order to control or eliminate such waves, different methods 

have been developed [10,21–25] . However, an important endeavor 

is the understanding of particular mechanisms of the origin of spi- 

ral and scroll waves, so it might be possible to avoid their gen- 

eration instead of controlling their behavior. Particularly, the gen- 

eration of scroll waves by periodic stimulation of a medium in 

the presence of obstacles is addressed in this work. The relevance 

of generation of spiral waves due to obstacles can be appreciated 

from cardiac dynamics, where obstacles might appear from scar 

tissue, product of previous infarctions [15,26] , or can be arteries 

[27] or natural orifices in the atria [28] . In this case, obstacles play 

an important role in the transition and evolution of different car- 

diac arrhythmias [29] . 

In a seminal work [9] , Panfilov and Keener presented a study 

about the generation of spiral waves, when periodic propagating 

pulses interacted with a non excitable obstacle. When an excitable 

medium with an obstacle was excited periodically, it was shown 

that for a certain periodicity in the stimulation impulses, a pair 

of symmetric spiral waves were created [9] . Moreover, one of the 
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conclusions was that a minimum length of the obstacle in the di- 

rection perpendicular to the course of the stimulation pulses, is 

required in order to obtain spiral waves. 

Although the mechanism they presented is well known in the 

literature, there are still questions that have not been addressed 

properly. For instance, is the proposed mechanisms in [9] the only 

one that implies generation of spiral waves? In which sense are 

the results in [9] still valid in the three dimensional space? In this 

work we are interested to find properties in the size of rectangular 

and rectangular prism obstacles in two and three dimensions, re- 

spectively, such that under periodic stimulation we obtain, or not, 

spiral and scroll waves. The mechanisms of generation of spiral and 

scroll waves will depend on the size of the obstacle, the excitabil- 

ity of the medium and the dimension of the space. The results in 

the three dimensional space are not a straightforward extension of 

the two dimensional case. 

Thus, this work is organized as follows. Initially, in Section 2 we 

present the model equations and the numerical methods used in 

this work. After that, in Section 3 , an analysis of the minimum 

size that an obstacle in a two dimensional space requires in or- 

der to form spiral waves as a function of the excitability of the 

medium, is presented. In the same section, we extend the studies 

to the three dimensional space where two different types of gen- 

erated scrolls (attached and meandering) are presented and dis- 

cussed. Additionally, two different mechanisms to obtain meander- 

ing scroll waves are discussed. We close this work with a discus- 

sion and conclusions section ( Section 4 ). 

2. The model equations and numerical methods 

For the numerical simulations we used the model presented 

by Panfilov and Keener [9] , which is of the FHN type [30,31] and 

it was developed to understand cardiac dynamics. We employed 

these equations as our motivation are cardiac dynamics and our 

results will be argued using generic properties of excitable media. 

However, despite their simplicity it has been shown that some of 

the results obtained with these simple models can be used to un- 

derstand properties for more complex models of excitable nature. 

The equations are given by 

˙ u = ∇ · (D ∇u ) − f (u ) − v 
˙ v = ε(u )(ku − v ) (1) 

where we take D = I, the identity matrix in two or three dimen- 

sions, and 

f (u ) = 

{ 

C 1 u for u ≤ u 1 

−C 2 u + a for u 1 < u ≤ u 2 

C 3 (u − 1) for u > u 2 

ε(u ) = 

{ 

ε 1 for u ≤ u 1 

ε 2 for u 1 < u ≤ u 2 

ε 3 for u > u 2 

. 

The constants C 1 , C 2 , C 3 , a, k , ε1 , ε2 y ε3 are positive and u 1 , u 2 ∈ 

(0, 1). In our simulations the parameter values were taken as u 2 = 

0 . 841 , C 1 = 20 , C 2 = 3 , C 3 = 15 , a = 0 . 15 , ε 1 = 0 . 14 , ε 2 = 0 . 0589 , 

ε 3 = 2 . 5 , and u 1 varied. u 1 is one of the parameters that controls 

the threshold value for excitation. A larger value of u 1 implies a 

less excitable system. The variable u is the excitable variable and 

v is the inhibitory variable. In cardiac dynamics u plays the role of 

the membrane potential, whereas v represents a gate variable. 

The set of Eq. (1) are solved in two and three dimensions. In 

two dimensions the traditional centered finite difference was used 

to discretize the second derivative in space, whereas advance in 

time was done with the Euler method. In some of the three di- 

mensional simulations ( Fig. 6 ), a semi-implicit scheme was imple- 

mented as given by Keener and Bogar [32] , in order to acceler- 

ate the computations. For the explicit finite differences scheme, 

Fig. 1. Obstacle in the two dimensional space. Propagation of the pulses takes 

place from left to right. By moving a x , the length of the obstacle in the x direc- 

tion changes. 

the time step is taken as �t = 0 . 001 and the grid discretization 

is �x = 0 . 1 , whereas for the semi-implicit scheme �t = 0 . 02 and 

�x = 0 . 13 . From [9] , we have that 1 space unit corresponds to 

2.4 mm and 1 computational time unit equals 10.59 ms. 

Finally, obstacles in excitable media with emphasis of cardiac 

wave propagation, can have a partially excitable or non-excitable 

nature [29] and in this work we focus our study in the latter ones. 

For the solution of the equations, no-flux boundary conditions are 

imposed at the boundary of the obstacle and the domain. 

3. Numerical results 

3.1. Two dimensional studies 

In this section we present a study of the minimum size of 

an obstacle required to form a spiral wave as a function of u 1 . 

We consider initially a rectangular domain � = { (x, y ) | x ∈ [0 , 60] , 

y ∈ [0, 60]} and an obstacle inside the domain given by �o = 

{ (x, y ) | x ∈ [ a x , 23] , y ∈ [30 − L y / 2 , 30 + L y / 2] } , where a x is a param- 

eter value that will help to choose the length of the obstacle in the 

x direction, by moving the left part of the obstacle and keeping 

fixed the right side of the obstacle at x = 23 ( Fig. 1 ). 

3.1.1. Excitability threshold 

One of the measures of excitability is given by the threshold 

potential [31] . The threshold potential plays an essential role in 

the generation and propagation of action potentials and it is a 

measure between the resting potential and the minimum potential 

needed to generate an action potential. In a medium with a re- 

duced threshold potential, new action potentials can be generated 

and propagate more easily than in the case of an increased thresh- 

old potential. As the threshold potential is increased, it becomes 

more difficult to activate the medium to generate new action po- 

tentials. 

In the model, u 1 provides a measure of the threshold poten- 

tial, and the effect of modifying it can be observed in the tra- 

jectory traced by the tip of a spiral wave. Fig. 2 shows different 

tip trajectories for particular values of u 1 in the interval [0.0065, 

0.136]. Values of u 1 larger than 0.136 result in circular tip trajec- 

tories with increasing radii, and for u 1 > 0.152 no spiral waves 

can be formed. Tip trajectories are computed by the intersection of 
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