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1. Introduction 

For traditional model of predator-prey, the authors do not usu- 

ally take into account either the fact that the distribution of pop- 

ulation is usually inhomogeneous or the fact that the species de- 

velop naturally strategies for survival. Both of these considerations 

involve diffusion process which is complicated when the concen- 

tration levels of species cause different movements of population. 

Such movements arise from the concentration of other species or 

that of the same species. The natural tendency of species to ar- 

eas of smaller population concentration produces random diffu- 

sion, while the movement of species in response to behavior of 

another population, for example, pursuit and evasion, gives rise to 

the complicated diffusion which is modeled by cross-diffusion. This 

more intricate but realistic predator-prey model has been proposed 

by ecologists and mathematicians [14,16,17] . 

In this article, we investigate the following elliptic system with 

cross-diffusion incorporating Holling type-II functional response 

under the Dirichlet boundary condition: 

−�[(1 + αv ) u ] = u 

(
a − u − cv 

1 + mu 

)
in �, 

−�
[ (

μ + 

1 

1 + βu 

)
v 
] 

= v 
(

b − v + 

ecu 

1 + mu 

)
in �, 

u = v = 0 on ∂�, (1.1) 

where � is a bounded domain in R N ( N ≥ 1 is an integer) with a 

smooth boundary ∂�; u and v represent the densities of the prey 
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and predator respectively. The parameters α, β , μ, a, b, c, e and 

m are positive constants. The model (1.1) means that, in addition 

to the dispersive force, the diffusion also depends on population 

pressure from other species. 

The flux of diffusion to the predators of the system (1.1) is 

J = −∇ 

(
μ + 

1 

1 + βu 

)
v 

= −
(
μ + 

1 

1 + βu 

)
∇v + 

βv 
(1 + βu ) 2 

∇u. 

The part βv 
(1+ βu ) 2 

∇u of the diffusion flux is directed toward the in- 

creasing densities of the prey, which indicates that the preys re- 

spond to attack of team for the movement of predators. The part 

−(μ + 

1 
1+ βu 

) ∇v of the diffusion flux is directed toward the de- 

creasing densities of the predators, which implies that the preda- 

tors move towards the preys to predate [1] . 

When the predators invade areas with high food abundance to 

increase the efficiency of foraging and the preys switch to defend 

or run away, these movements of diffusion demonstrate rich dy- 

namics. Stability and existence of positive solution are hot topics 

to discuss for the predator-prey system. Many authors have es- 

tablished the existence of positive solution and stability in various 

population dynamics models [7,8,10,15,18,21–23] , but most of them 

are without cross-diffusion. Especially, to my knowledge, there are 

few papers to investigate the stability and existence of the positive 

solution for the cross-diffusion predator-prey system under Dirich- 

let boundary condition. In this paper, we shall demonstrate asymp- 

totical stability of system (1.1) by using the method of eigenvalue, 

and the existence of positive steady states for (1.1) by employing 
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fixed points index theory, bifurcation theory, energy estimates and 

the differential method of implicit function. 

This paper is organized into five sections. In next section, the 

preliminaries are presented. In Section 3 , the asymptotical stabil- 

ities are established for this cross-diffusion model. In section 4, 

the sufficient conditions to existence of positive solutions of sys- 

tem (1.1) are found. In Section 5 , global bifurcation of positive so- 

lutions is investigated to system (1.1) . In the final section, we make 

a brief comments and conclusions. 

2. Preliminaries 

Denote by λ1 ( q ) < λ2 ( q ) ≤ λ3 ( q ) ≤ ��� all eigenvalues of 

−�u + q (x ) u = λu in �, 

u = 0 on ∂�, 

where q (x ) ∈ C( �) . For convenience, we denote λi = λi (0) . It is 

well known that λi ( q 1 ) < λi ( q 2 ) when q 1 ( x ) ≤ q 2 ( x ) and q 1 ( x ) is not 

equivalent to q 2 ( x ), and λ1 ( q ) is simple. Moreover, by the Propo- 

sition A.1 in [9] , the principal eigenvalue λ1 ( q ) has the following 

properties: 

Proposition 2.1. 

(i) Assume that φn ∈ H 

1 
0 
(�) and φ ∈ H 

1 
0 
(�) are the correspond- 

ing eigenfunctions of (2.1) and satisfy ‖ φn ‖ L 2 (�) = ‖ φ‖ L 2 (�) = 

1 for q n ∈ C( �) and q ∈ C( �) . If lim n →∞ 

‖ q n − q ‖ L ∞ (�) = 0 , 

then lim n →∞ 

λ1 (q n ) = λ1 (q ) and lim n →∞ 

φn = φ strongly in 

H 

1 
0 
(�) ; 

(ii) Let a mapping ξ → q ξ be differentiable continuously from an 

open interval ( c, d ) to C( �) with respect to supremum norm. If 

φξ ∈ H 

1 
0 
(�) is the unique positive eigenfunction corresponding 

to λ1 ( q ξ ) with ‖ φξ‖ L 2 (�) = 1 , then ξ → λ1 ( q ξ ) is differen- 

tiable continuously from ( c, d ) to R and 

d 

dξ
λ1 (q ξ ) = 

∫ 
�

∂q ξ

∂ξ
φ2 

ξ dx. 

Consider the following logistic equation with random diffusion 

−�u = u (ρ − u ) in �, 

u = 0 on ∂�, 

where ρ is a positive constant and � ( �⊂ R n ) is a bounded open 

set with smooth boundary ∂�. Then, by Lemma 1 in [4] and 

Propositions 6.1–6.4 in [6] , we obtain the following proposition: 

Proposition 2.2. 

(i) There does not exist nontrivial solution when ρ ≤ λ1 ; 

(ii) When ρ > λ1 , then (2.2) admits a unique positive solution 

θρ ( x ) satisfying 0 < θρ ( x ) < ρ for all x ∈ �; 

(iii) The unique positive solution θρ of (2.2) satisfies: lim ρ→ λ+ 
1 
θρ = 

0 uniformly in �, lim ρ→∞ 

θρ = ∞ and lim ρ→∞ 

θρ/ρ = 1 uni- 

formly in K, where K is any compact subset of �; 

(iv) The mapping ρ → θρ is C 1 from ( λ1 , ∞ ) to C( �) and θρ ( x ) 

increases strictly with respect to ρ . More precisely, 

∂θρ

∂ρ
= (−� + (2 θρ − ρ) I) −1 θρ, 

where (−� + (2 θρ − ρ) I) −1 is the inverse operator of −� + 

(2 θρ − ρ) I with zero Dirichlet boundary condition. 

Let W be the natural positive cone of E , where E is a Ba- 

nach space. Define W y = { x ∈ E : y + κx ∈ W for some κ > 0 } and 

S y = { x ∈ W y : −x ∈ W y } for y ∈ W . Suppose that y ∗ is a fixed point 

of compact operator A : W → W and L = A 

′ 
(y ∗) is the Fréchet 

derivative of A at y ∗ . If there exist t ∈ (0, 1) and ω ∈ W y ∗ \ S y ∗
such that ω − tA 

′ 
ω ∈ S y ∗ , then we call that A 

′ 
has property γ on 

W y ∗ . Define index W 

(A, U) = index (A, U, W ) = deg W 

(I − A, U, 0) for 

an open subset U ⊂ W , where I is the identity mapping. Moreover, 

the fixed point index of A at y ∗ is defined by index W 

(A, y ∗) = 

index (A, y ∗, W ) = index (A, U y ∗ , W ) in W , where U ( y ∗ ) is a small 

open neighborhood of y ∗ in W . Then the following lemma can be 

derived from the results in [5,8,12,13] . 

Proposition 2.3. Let I − L be invertible on W y ∗ . 

(i) If L has property γ on W y ∗ , then index w 

(A, y ∗) = 0 ;
(ii) If L does not have property γ on W y ∗ , then index w 

(A, y ∗) = 

(−1) δ, where δ is the sum of algebraic multiplicities of the 

eigenvalues of L which are greater than 1. 

For the system (2.1) , by Lemmas 2.1 and 2.3 in [12] , we have 

the following results. 

Proposition 2.4. Assume that M is a positive constant such that M −
q (x ) > 0 on � for q ∈ C α( �) . Then 

(i) λ1 (q ) > 0 ⇒ r[(M − �) −1 (M − q (x ))] < 1 ;
(ii) λ1 (q ) < 0 ⇒ r[(M − �) −1 (M − q (x ))] > 1 ;

(iii) λ1 (q ) = 0 ⇒ r[(M − �) −1 (M − q (x ))] = 1 , 

where r[(M − �) −1 (M − q (x ))] is the spectral radius of the 

linear operator (M − �) −1 (M − q (x )) . 

3. Analysis of the trivial and semi-trivial solution of (1.1) 

It is easy to check that the system (1.1) admits the trivial so- 

lution (0, 0), and two semi-trivial solutions ( θ a , 0) if a > λ1 and 

(0 , (μ + 1) θb/ (μ+1) ) if b > (μ + 1) λ1 , where θb/ (μ+1) is a positive 

of (2.2) with ρ replaced by b/ (μ + 1) . The following theorem is 

the main result in this section. 

Theorem 3.1. 

(i) Assume that a < λ1 and b < (μ + 1) λ1 , then trivial steady 

state (0, 0) is locally asymptotically stable, while (0, 0) is un- 

stable if a > λ1 or b > (μ + 1) λ1 ; 

(ii) There exists μ∗ such that semi-trivial steady state ( θ a , 0) is 

locally asymptotically stable when μ > μ∗; 

(iii) Assume that λ1 ( 
c(μ+1) θb/ (μ+1) −a 

1+ α(μ+1) θb/ (μ+1) 
) > 0 , then semi-trivial 

(0 , (μ + 1) θb/ (μ+1) ) (which exists when b > (μ + 1) λ1 ) 

is locally asymptotically stable, while it is unstable if 

λ1 ( 
c(μ+1) θb/ (μ+1) −a 

1+ α(μ+1) θb/ (μ+1) 
) < 0 . 

Proof. 

(i) The proof of (i) is similar to that of (ii), so we omit it. 

(ii) The linearized model of (1.1) at ( θ a , 0) is as follows: 

−�(u + αθa v ) = (a − 2 θa ) u − cθa 

1+ mθa 
v in �, 

−�
(
μ + 

1 
1+ βθa 

)
v = 

(
b + 

ecθa 

1+ mθa 

)
v in �, 

u = v = 0 on ∂�. 

(3.1) 

The stability of ( θ a , 0) is determined by the following eigen- 

value problem 

−�(φ + αθa ψ) + (2 θa − a ) φ + 

cθa 

1+ mθa 
ψ = λφ in �, 

−�
(
μ + 

1 
1+ βθa 

)
ψ −

(
b + 

ecθa 

1+ mθa 

)
ψ = λψ in �, 

φ = ψ = 0 on ∂�. 

(3.2) 

The system (3.2) is not completely coupled, so it can be di- 

vided into the following the eigenvalue problems (see [11] ) 

−�φ + (2 θa − a ) φ = λφ in �, 

φ = 0 on ∂�, 
(3.3) 
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