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Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite
number of points from a fractal set using correlation sum and regression in a log-log plot. However, this
traditional approach requires a large amount of data and often leads to a biased estimate. The novel ap-
proach proposed here can be used for the estimation of the correlation dimension in a frequency domain
using the power spectrum of the investigated fractal set. This work presents a new spectral character-
MSC: istic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The

28A80 theoretical results can be directly applied to uniformly distributed samples from a given point set. The
65P20 efficiency of the proposed method was tested on sets with a known correlation dimension using Monte
Keywords: Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for
Point set many types of fractal sets.
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1. Introduction

Correlation dimension D, is a popular tool for fractal dimension
estimation and belongs to a family of entropy-based fractal dimen-
sions such as capacity dimension Dy, information dimension D,
and their generalisation, Renyi dimension Dy, for o > 0. The prop-
erties of the different dimension types are summarised in [1] and
[2]. The main idea of using correlation dimension is the distance
between its points in space. In the original concept, only the num-
ber of points that are not farther apart as a fixed value can carry
the information about the density of points contained in the in-
vestigated set. The geometrical meaning of correlation dimension
is explained well in [3].

This traditional approach of correlation dimension estimation is
based on Grassberger and Procaccia’s algorithm [4,5] and is widely
used in biomedicine for electroencephalography signal analysis
[6,7] or in cardiology [8]. Recently, new approaches of correlation
dimension estimation were presented using a weighting function
[9] or methods suitable for high-dimensional signals [10]. The lin-
ear regression model, on which the majority of methods are based,
provides an often biased estimate of fractal dimension; for this rea-
son, Hongying and Duanfeng [11] made some efforts to improve
this procedure.
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In this work, we present a novel approach of correlation dimen-
sion estimation that is based on the rotation of the power spec-
trum of a point set. The proposed method is stable even for a small
number of points, and the resulting characteristic has a smooth de-
velopment.

2. Correlation dimension

Correlation dimension, introduced by Grassberger and Procac-
cia, involves measuring the distance between all pairs of points in
the investigated set. For the Lebesgue measurable set 7 c R", the
correlation sum [4] is defined for r > 0 as the limit case
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N (N 1)
i=1 j=i+1
where ||-|| denotes a Euclidean norm that is rotation invariant, I is

the indicator function and x4, ..., Xy are vectors from . Because
the correlation dimension expresses the relative amount of points
whose distance is less than r, the correlation sum can be rewritten
as

cm=E prob (Jx-yl<n). ()

xy~U(F)

I(x-yll <) =

for x, y that are uniformly distributed on F. Therefore, C(r) is a cu-
mulative distribution function of random variable r = ||x — y||. The
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correlation dimension D, of set F is based on the correlation sum

and is defined as
. InC(r

D, = lim ()
r—~0+ Inr

. (3)

if the limit exists.

3. Continuous spectrum of a point set

The Fourier transform of an n-dimensional set 7 c R" is de-
fined using the operator of the expected value [12] as

Flw) = x~l];:(f) exp(—iw - x) (4)

for angular frequency @ € R" and for x uniformly distributed on F.
The power spectrum of set F equals P(w) = |F(co)|2 =F(w) - F(w),
where F* is a complex conjugate of F. Moreover, it can be ex-
pressed as

P(w) = NIJE(F) ywll;(]-') exp(—iw - x) exp(iw - y)
= E _exp(-i®-(x-y)). (5)
xy~U(F)

where x and y are independent and identically distributed from F.
The power spectrum is frequently used for fractal set investigation
[13-15]. When the research is physically motivated, it is usual to
denote the angular frequency as w = 2w /A for wavelength A of an
X-ray or light beam.

4. Rotational spectrum

The goal of the novel method is to obtain a one-dimensional
function as a derivative of the power spectrum, which is useful
in fractal analysis. The procedure was inspired by Debye [16]| and
by his X-ray diffraction method, which is often referred to as the
Debye-Scherrer method. We denote SO(n) as the group of all rota-
tions in R" around the origin. Because any rotation R € SO(n) is a
linear transform, the following equation holds

R®) —R@) =R@x-y) = |x-y| - & (6)

where & is a direction vector satisfying ||';'H =1and £ S,_; for
an n-dimensional sphere S,_; = {x € R" : ||x|| = 1}. Using the fac-
torisation of angular frequency @ = Q- ¥ for Q ¢ Rar and normali-
sation vector ¥ € S,_1, we can define rotational spectrum as

S(2)= E E E exp(—iQyYR(x-y)), 7
= ReSO(n) VeSn1 xy~U(F) p( 'p( y) (7)

which can be expressed explicitly in the following theorem.

Theorem 1. Rotational spectrum can be expressed as

S@ = E_Hi(@lx-y]). (8)
where
2% . (L
Hy(q) = qnzz(z)anz (q)- 9)

Proof. Because every rotation is a linear transform, we can rewrite
the rotational spectrum as

S(R)= E E exp(-i2|x— L&), 10
) xy~U(F) P.EcSu p( Ix=yl¥-&) (10)

The angle v between vectors ¥ and & satisfies cosv = ¥ - & With-
out loss of generality, we can set £ =(1,0,0,...,0) and rewrite
the rotational spectrum as

S@) = E_ Hi(Qlx-yl). (1)

where the function Hy, : R — C is defined as

Hp (q) = E
YeSn
Y1 =cos v

exp(—igcosv). (12)

For n =1, we obtain a degenerated rotation together with v < {0,
m}; therefore, the kernel function H; equals

H, (q) = eXP(*IQ)ZJr exp(iq)

In case n > 2, we can express the kernel function using an integral
formula:

= C0sq. (13)

2

li(q9)  Jy exp(—igcosv)sin" “v dv

L(q) JTsin" v dv

The Poisson integral [17] formula for the Bessel function Jp(q) of
the first kind in the form

Hn(q) = (14)

(ﬂ)p T
1,(q) = 27/ exp(—igcos v) sin®? v dv (15)
T ()
allows the integral in the nominator to be rewritten as
Ip(@T(p+3)VT
g = 2@ 2)vT (16)

q\P ’
(3)
whereas the integral in the denominator is a limit case of the Pois-
son formula

@ (p+3)vr  T(p+3)vm

I =lim = 17
2(q) lim 3 NS (17)
2
For p= ”2;2 we obtain the final form of the kernel function ex-
pressed by the Bessel function J,(q) as
2'7 T (8
Haq) = q(Z)J @. (18)

Applying Hp(q) for n =1, we obtain H;(q) = cosq as a particular
case, which extends the range of formula (18) toneR. O

The rotation can be performed in any space whose dimension n
is not less than the dimension m of the original space of 7. When
the dimension of the rotation is greater than m, any vector X ¢ F
is completed, with the zeros for the remaining n — m coordinates
having a sufficient length. The most valuable result can be obtained
in the case of rotation in an infinite-dimensional space.

Theorem 2. The scaled limit case of the kernel function Hy is the
Gaussian function, i.e.,

lim Hy (tv/n) = exp (_t;) (19)

Proof. For the investigation of the behaviour of the kernel function
when n — oo, we use the Taylor expansion of Hy(q) centred at
qo=0

o0 F(H) q2 k
Ha(q) = g Wzk)k, (—4> : (20)

and by using the substitution q = t4/n, we can transform it into

k
=1 t2 (%)nk
Htvn) =S —|-= | —2— . 21
n(EVm) %k!( 2) T2 +k)2k (21)
For every k € N, it holds that
ny\nk
rem (22)
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