Application of rotational spectrum for correlation dimension estimation

Martin Dlask*, Jaromir Kukal
Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Department of Software Engineering, Trojanova 12, Prague, Czech Republic

A R T I C L E I N F O

Article history:

Received 22 May 2016
Revised 15 January 2017
Accepted 12 April 2017

MSC:

28 A 80
65P20

Keywords:

Point set
Correlation dimension
Power spectrum
Rotation
Monte Carlo

Abstract

Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite number of points from a fractal set using correlation sum and regression in a log-log plot. However, this traditional approach requires a large amount of data and often leads to a biased estimate. The novel approach proposed here can be used for the estimation of the correlation dimension in a frequency domain using the power spectrum of the investigated fractal set. This work presents a new spectral characteristic called "rotational spectrum" and shows its properties in relation to the correlation dimension. The theoretical results can be directly applied to uniformly distributed samples from a given point set. The efficiency of the proposed method was tested on sets with a known correlation dimension using Monte Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for many types of fractal sets.

© 2017 Published by Elsevier Ltd.

1. Introduction

Correlation dimension D_{2} is a popular tool for fractal dimension estimation and belongs to a family of entropy-based fractal dimensions such as capacity dimension D_{0}, information dimension D_{1} and their generalisation, Renyi dimension D_{α}, for $\alpha \geq 0$. The properties of the different dimension types are summarised in [1] and [2]. The main idea of using correlation dimension is the distance between its points in space. In the original concept, only the number of points that are not farther apart as a fixed value can carry the information about the density of points contained in the investigated set. The geometrical meaning of correlation dimension is explained well in [3].

This traditional approach of correlation dimension estimation is based on Grassberger and Procaccia's algorithm [4,5] and is widely used in biomedicine for electroencephalography signal analysis [6,7] or in cardiology [8]. Recently, new approaches of correlation dimension estimation were presented using a weighting function [9] or methods suitable for high-dimensional signals [10]. The linear regression model, on which the majority of methods are based, provides an often biased estimate of fractal dimension; for this reason, Hongying and Duanfeng [11] made some efforts to improve this procedure.

[^0]In this work, we present a novel approach of correlation dimension estimation that is based on the rotation of the power spectrum of a point set. The proposed method is stable even for a small number of points, and the resulting characteristic has a smooth development.

2. Correlation dimension

Correlation dimension, introduced by Grassberger and Procaccia, involves measuring the distance between all pairs of points in the investigated set. For the Lebesgue measurable set $\mathcal{F} \subset \mathbb{R}^{n}$, the correlation sum [4] is defined for $r>0$ as the limit case
$\mathrm{C}(r)=\lim _{N \rightarrow \infty} \frac{2}{N(N-1)} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \mathrm{I}\left(\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right\| \leq r\right)$,
where $\|\cdot\|$ denotes a Euclidean norm that is rotation invariant, I is the indicator function and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}$ are vectors from \mathcal{F}. Because the correlation dimension expresses the relative amount of points whose distance is less than r, the correlation sum can be rewritten as
$\mathrm{C}(r)=\underset{\boldsymbol{x} \boldsymbol{y} \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \mathrm{I}(\|\mathbf{x}-\mathbf{y}\| \leq r)=\underset{\boldsymbol{x}, \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\operatorname{prob}}(\|\boldsymbol{x}-\boldsymbol{y}\| \leq r)$,
for $\boldsymbol{x}, \boldsymbol{y}$ that are uniformly distributed on \mathcal{F}. Therefore, $\mathrm{C}(r)$ is a cumulative distribution function of random variable $r=\|\boldsymbol{x}-\boldsymbol{y}\|$. The
correlation dimension D_{2} of set \mathcal{F} is based on the correlation sum and is defined as
$D_{2}=\lim _{r \rightarrow 0^{+}} \frac{\ln C(r)}{\ln r}$,
if the limit exists.

3. Continuous spectrum of a point set

The Fourier transform of an n-dimensional set $\mathcal{F} \subset \mathbb{R}^{n}$ is defined using the operator of the expected value [12] as
$\mathrm{F}(\boldsymbol{\omega})=\underset{\boldsymbol{x} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \exp (-\mathrm{i} \boldsymbol{\omega} \cdot \boldsymbol{x})$
for angular frequency $\omega \in \mathbb{R}^{n}$ and for \boldsymbol{x} uniformly distributed on \mathcal{F}. The power spectrum of set \mathcal{F} equals $\mathrm{P}(\boldsymbol{\omega})=|\mathrm{F}(\boldsymbol{\omega})|^{2}=\mathrm{F}(\boldsymbol{\omega}) \cdot \mathrm{F}^{*}(\boldsymbol{\omega})$, where F^{*} is a complex conjugate of F . Moreover, it can be expressed as

$$
\begin{align*}
\mathrm{P}(\boldsymbol{\omega}) & =\underset{\boldsymbol{x} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \underset{\boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \exp (-\mathrm{i} \boldsymbol{\omega} \cdot \boldsymbol{x}) \exp (\mathrm{i} \boldsymbol{\omega} \cdot \boldsymbol{y}) \\
& =\underset{\boldsymbol{x} \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \exp (-\mathrm{i} \boldsymbol{\omega} \cdot(\boldsymbol{x}-\boldsymbol{y})), \tag{5}
\end{align*}
$$

where \boldsymbol{x} and \boldsymbol{y} are independent and identically distributed from \mathcal{F}. The power spectrum is frequently used for fractal set investigation [13-15]. When the research is physically motivated, it is usual to denote the angular frequency as $\omega=2 \pi / \lambda$ for wavelength λ of an X -ray or light beam.

4. Rotational spectrum

The goal of the novel method is to obtain a one-dimensional function as a derivative of the power spectrum, which is useful in fractal analysis. The procedure was inspired by Debye [16] and by his X-ray diffraction method, which is often referred to as the Debye-Scherrer method. We denote $\mathrm{SO}(n)$ as the group of all rotations in \mathbb{R}^{n} around the origin. Because any rotation $\mathrm{R} \in \mathrm{SO}(n)$ is a linear transform, the following equation holds
$\mathrm{R}(\boldsymbol{x})-\mathrm{R}(\boldsymbol{y})=\mathrm{R}(\boldsymbol{x}-\boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\| \cdot \boldsymbol{\xi}$,
where $\boldsymbol{\xi}$ is a direction vector satisfying $\|\boldsymbol{\xi}\|=1$ and $\boldsymbol{\xi} \in \mathcal{S}_{n-1}$ for an n-dimensional sphere $\mathcal{S}_{n-1}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\|\boldsymbol{x}\|=1\right\}$. Using the factorisation of angular frequency $\omega=\Omega \cdot \boldsymbol{\psi}$ for $\Omega \in \mathbb{R}_{0}^{+}$and normalisation vector $\psi \in \mathcal{S}_{n-1}$, we can define rotational spectrum as
$\mathrm{S}(\Omega)=\underset{\mathrm{R} \in \mathrm{SO}(n)}{\mathrm{E}} \underset{\boldsymbol{\psi} \in \mathcal{S}_{n-1}}{\mathrm{E}} \underset{\boldsymbol{x} \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \exp (-\mathrm{i} \Omega \boldsymbol{\psi} \mathrm{R}(\boldsymbol{x}-\boldsymbol{y}))$,
which can be expressed explicitly in the following theorem.
Theorem 1. Rotational spectrum can be expressed as
$\mathrm{S}(\Omega)=\underset{\boldsymbol{x} \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \mathrm{H}_{n}(\Omega\|\boldsymbol{x}-\boldsymbol{y}\|)$,
where
$\mathrm{H}_{n}(q)=\frac{2^{\frac{n-2}{2}} \cdot \Gamma\left(\frac{n}{2}\right)}{q^{\frac{n-2}{2}}} \mathrm{~J}_{\frac{n-2}{2}}(q)$.
Proof. Because every rotation is a linear transform, we can rewrite the rotational spectrum as
$\mathrm{S}(\Omega)=\underset{\boldsymbol{x} \boldsymbol{y} \sim \mathrm{U}(\mathcal{F})}{\mathrm{E}} \underset{\boldsymbol{\psi}, \boldsymbol{\xi} \in \mathcal{S}_{n-1}}{\mathrm{E}} \exp (-\mathrm{i} \Omega\|\boldsymbol{x}-\boldsymbol{y}\| \boldsymbol{\psi} \cdot \boldsymbol{\xi})$.
The angle ν between vectors $\boldsymbol{\psi}$ and $\boldsymbol{\xi}$ satisfies $\cos v=\boldsymbol{\psi} \cdot \boldsymbol{\xi}$. Without loss of generality, we can set $\boldsymbol{\xi}=(1,0,0, \ldots, 0)$ and rewrite the rotational spectrum as
$S(\Omega)=\underset{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{F}}{\mathrm{E}} H_{n}(\Omega\|\boldsymbol{x}-\boldsymbol{y}\|)$,
where the function $\mathrm{H}_{n}: \mathbb{R} \mapsto \mathbb{C}$ is defined as

$$
\begin{equation*}
\mathrm{H}_{n}(q)=\underset{\substack{\psi \in \mathcal{S}_{n-1} \\ \psi_{1}=\cos v}}{\mathrm{E}} \quad \exp (-\mathrm{i} q \cos \nu) \tag{12}
\end{equation*}
$$

For $n=1$, we obtain a degenerated rotation together with $v \in\{0$, $\pi\}$; therefore, the kernel function H_{1} equals
$\mathrm{H}_{1}(q)=\frac{\exp (-\mathrm{i} q)+\exp (\mathrm{i} q)}{2}=\cos q$.
In case $n \geq 2$, we can express the kernel function using an integral formula:
$\mathrm{H}_{n}(q)=\frac{\mathrm{I}_{1}(q)}{\mathrm{I}_{2}(q)}=\frac{\int_{0}^{\pi} \exp (-\mathrm{i} q \cos v) \sin ^{n-2} v \mathrm{~d} v}{\int_{0}^{\pi} \sin ^{n-2} v \mathrm{~d} v}$.
The Poisson integral [17] formula for the Bessel function $\mathrm{J}_{p}(q)$ of the first kind in the form
$\mathrm{J}_{p}(q)=\frac{\left(\frac{q}{2}\right)^{p}}{\Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}} \int_{0}^{\pi} \exp (-\mathrm{i} q \cos v) \sin ^{2 p} v \mathrm{~d} v$
allows the integral in the nominator to be rewritten as
$\mathrm{I}_{1}(q)=\frac{\mathrm{J}_{p}(q) \Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}}{\left(\frac{q}{2}\right)^{p}}$,
whereas the integral in the denominator is a limit case of the Poisson formula
$\mathrm{I}_{2}(q)=\lim _{q \rightarrow 0} \frac{\mathrm{~J}_{p}(q) \Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}}{\left(\frac{q}{2}\right)^{p}}=\frac{\Gamma\left(p+\frac{1}{2}\right) \sqrt{\pi}}{\Gamma(p+1)}$.
For $p=\frac{n-2}{2}$, we obtain the final form of the kernel function expressed by the Bessel function $\mathrm{J}_{p}(q)$ as
$\mathrm{H}_{n}(q)=\frac{2^{\frac{n-2}{2}} \cdot \Gamma\left(\frac{n}{2}\right)}{q^{\frac{n-2}{2}}} \mathrm{~J}_{\frac{n-2}{2}}(q)$.
Applying $\mathrm{H}_{n}(q)$ for $n=1$, we obtain $\mathrm{H}_{1}(q)=\cos q$ as a particular case, which extends the range of formula (18) to $n \in \mathbb{R}$.

The rotation can be performed in any space whose dimension n is not less than the dimension m of the original space of \mathcal{F}. When the dimension of the rotation is greater than m, any vector $\boldsymbol{x} \in \mathcal{F}$ is completed, with the zeros for the remaining $n-m$ coordinates having a sufficient length. The most valuable result can be obtained in the case of rotation in an infinite-dimensional space.
Theorem 2. The scaled limit case of the kernel function H_{n} is the Gaussian function, i.e.,
$\lim _{n \rightarrow \infty} H_{n}(t \sqrt{n})=\exp \left(-\frac{t^{2}}{2}\right)$.
Proof. For the investigation of the behaviour of the kernel function when $n \rightarrow \infty$, we use the Taylor expansion of $H_{n}(q)$ centred at $q_{0}=0$
$\mathrm{H}_{n}(q)=\sum_{k=0}^{\infty} \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n}{2}+k\right) k!}\left(-\frac{q^{2}}{4}\right)^{k}$,
and by using the substitution $q=t \sqrt{n}$, we can transform it into
$\mathrm{H}_{n}(t \sqrt{n})=\sum_{k=0}^{\infty} \frac{1}{k!}\left(-\frac{t^{2}}{2}\right)^{k} \frac{\Gamma\left(\frac{n}{2}\right) n^{k}}{\Gamma\left(\frac{n}{2}+k\right) 2^{k}}$.
For every $k \in \mathbf{N}$, it holds that
$\lim _{n \rightarrow \infty} \frac{\Gamma\left(\frac{n}{2}\right) n^{k}}{\Gamma\left(\frac{n}{2}+k\right) 2^{k}}=1$,

https://daneshyari.com/en/article/5499679

Download Persian Version:
https://daneshyari.com/article/5499679

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: martindlask@centrum.cz (M. Dlask).
 http://dx.doi.org/10.1016/j.chaos.2017.04.026 0960-0779/© 2017 Published by Elsevier Ltd.

