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a b s t r a c t 

Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite 

number of points from a fractal set using correlation sum and regression in a log-log plot. However, this 

traditional approach requires a large amount of data and often leads to a biased estimate. The novel ap- 

proach proposed here can be used for the estimation of the correlation dimension in a frequency domain 

using the power spectrum of the investigated fractal set. This work presents a new spectral character- 

istic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The 

theoretical results can be directly applied to uniformly distributed samples from a given point set. The 

efficiency of the proposed method was tested on sets with a known correlation dimension using Monte 

Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for 

many types of fractal sets. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Correlation dimension D 2 is a popular tool for fractal dimension 

estimation and belongs to a family of entropy-based fractal dimen- 

sions such as capacity dimension D 0 , information dimension D 1 

and their generalisation, Renyi dimension D α , for α ≥ 0. The prop- 

erties of the different dimension types are summarised in [1] and 

[2] . The main idea of using correlation dimension is the distance 

between its points in space. In the original concept, only the num- 

ber of points that are not farther apart as a fixed value can carry 

the information about the density of points contained in the in- 

vestigated set. The geometrical meaning of correlation dimension 

is explained well in [3] . 

This traditional approach of correlation dimension estimation is 

based on Grassberger and Procaccia’s algorithm [4,5] and is widely 

used in biomedicine for electroencephalography signal analysis 

[6,7] or in cardiology [8] . Recently, new approaches of correlation 

dimension estimation were presented using a weighting function 

[9] or methods suitable for high-dimensional signals [10] . The lin- 

ear regression model, on which the majority of methods are based, 

provides an often biased estimate of fractal dimension; for this rea- 

son, Hongying and Duanfeng [11] made some effort s to improve 

this procedure. 
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In this work, we present a novel approach of correlation dimen- 

sion estimation that is based on the rotation of the power spec- 

trum of a point set. The proposed method is stable even for a small 

number of points, and the resulting characteristic has a smooth de- 

velopment. 

2. Correlation dimension 

Correlation dimension, introduced by Grassberger and Procac- 

cia, involves measuring the distance between all pairs of points in 

the investigated set. For the Lebesgue measurable set F ⊂ R 

n , the 

correlation sum [4] is defined for r > 0 as the limit case 

C(r) = lim 

N→∞ 

2 

N(N − 1) 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

I(‖ x i − x j ‖ ≤ r) , (1) 

where ‖·‖ denotes a Euclidean norm that is rotation invariant, I is 

the indicator function and x 1 , . . . , x N are vectors from F . Because 

the correlation dimension expresses the relative amount of points 

whose distance is less than r , the correlation sum can be rewritten 

as 

C(r) = E 

x , y ∼U(F ) 
I( ‖ 

x − y ‖ 

≤ r) = prob 

x , y ∼U(F ) 

( ‖ 

x − y ‖ 

≤ r ) , (2) 

for x , y that are uniformly distributed on F . Therefore, C( r ) is a cu- 

mulative distribution function of random variable r = ‖ x − y ‖ . The 
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correlation dimension D 2 of set F is based on the correlation sum 

and is defined as 

D 2 = lim 

r→ 0 + 

ln C(r) 

ln r 
, (3) 

if the limit exists. 

3. Continuous spectrum of a point set 

The Fourier transform of an n -dimensional set F ⊂ R 

n is de- 

fined using the operator of the expected value [12] as 

F( ω ) = E 

x ∼U(F ) 
exp (−i ω · x ) (4) 

for angular frequency ω ∈ R 

n and for x uniformly distributed on F . 

The power spectrum of set F equals P( ω ) = | F( ω ) | 2 = F( ω ) · F ∗( ω ) , 

where F ∗ is a complex conjugate of F. Moreover, it can be ex- 

pressed as 

P( ω ) = E 

x ∼U(F ) 
E 

y ∼U(F ) 
exp (−i ω · x ) exp (i ω · y ) 

= E 

x , y ∼U(F ) 
exp (−i ω · ( x − y )) , (5) 

where x and y are independent and identically distributed from F . 

The power spectrum is frequently used for fractal set investigation 

[13–15] . When the research is physically motivated, it is usual to 

denote the angular frequency as ω = 2 π/λ for wavelength λ of an 

X-ray or light beam. 

4. Rotational spectrum 

The goal of the novel method is to obtain a one-dimensional 

function as a derivative of the power spectrum, which is useful 

in fractal analysis. The procedure was inspired by Debye [16] and 

by his X-ray diffraction method, which is often referred to as the 

Debye-Scherrer method. We denote SO( n ) as the group of all rota- 

tions in R 

n around the origin. Because any rotation R ∈ SO( n ) is a 

linear transform, the following equation holds 

R( x ) − R( y ) = R( x − y ) = ‖ 

x − y ‖ 

· ξ, (6) 

where ξ is a direction vector satisfying 
∥∥ξ

∥∥ = 1 and ξ ∈ S n −1 for 

an n -dimensional sphere S n −1 = { x ∈ R 

n : ‖ x ‖ = 1 } . Using the fac- 

torisation of angular frequency ω = � · ψ for � ∈ R 

+ 
0 

and normali- 

sation vector ψ ∈ S n −1 , we can define rotational spectrum as 

S(�) = E 

R ∈ SO (n ) 

E 

ψ ∈S n −1 

E 

x , y ∼U(F ) 
exp (−i�ψ R( x − y )) , (7) 

which can be expressed explicitly in the following theorem. 

Theorem 1. Rotational spectrum can be expressed as 

S(�) = E 

x , y ∼U(F ) 
H n (�‖ 

x − y ‖ 

) , (8) 

where 

H n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (9) 

Proof. Because every rotation is a linear transform, we can rewrite 

the rotational spectrum as 

S(�) = E 

x , y ∼U(F ) 
E 

ψ , ξ∈S n −1 

exp (−i�‖ 

x − y ‖ 

ψ · ξ) . (10) 

The angle ν between vectors ψ and ξ satisfies cos ν = ψ · ξ. With- 

out loss of generality, we can set ξ = (1 , 0 , 0 , . . . , 0) and rewrite 

the rotational spectrum as 

S(�) = E 

x , y ∈F 
H n ( �‖ x − y ‖ ) , (11) 

where the function H n : R �→ C is defined as 

H n (q ) = E 

ψ ∈S n −1 

ψ 1 = cos ν

exp (−i q cos ν) . (12) 

For n = 1 , we obtain a degenerated rotation together with ν ∈ {0, 

π}; therefore, the kernel function H 1 equals 

H 1 (q ) = 

exp (−i q ) + exp (i q ) 

2 

= cos q. (13) 

In case n ≥ 2, we can express the kernel function using an integral 

formula: 

H n (q ) = 

I 1 (q ) 

I 2 (q ) 
= 

∫ π
0 exp (−i q cos ν) sin 

n −2 ν d ν∫ π
0 sin 

n −2 ν d ν
. (14) 

The Poisson integral [17] formula for the Bessel function J p ( q ) of 

the first kind in the form 

J p (q ) = 

(
q 
2 

)p 

�
(

p + 

1 
2 

)√ 

π

∫ π

0 

exp (−i q cos ν) sin 

2 p ν d ν (15) 

allows the integral in the nominator to be rewritten as 

I 1 (q ) = 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p , (16) 

whereas the integral in the denominator is a limit case of the Pois- 

son formula 

I 2 (q ) = lim 

q → 0 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p = 

�
(

p + 

1 
2 

)√ 

π

�( p + 1 ) 
. (17) 

For p = 

n −2 
2 , we obtain the final form of the kernel function ex- 

pressed by the Bessel function J p ( q ) as 

H n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (18) 

Applying H n ( q ) for n = 1 , we obtain H 1 (q ) = cos q as a particular 

case, which extends the range of formula (18) to n ∈ R . �

The rotation can be performed in any space whose dimension n 

is not less than the dimension m of the original space of F . When 

the dimension of the rotation is greater than m , any vector x ∈ F
is completed, with the zeros for the remaining n − m coordinates 

having a sufficient length. The most valuable result can be obtained 

in the case of rotation in an infinite-dimensional space. 

Theorem 2. The scaled limit case of the kernel function H n is the 

Gaussian function, i.e., 

lim 

n →∞ 

H n (t 
√ 

n ) = exp 

(
− t 2 

2 

)
. (19) 

Proof. For the investigation of the behaviour of the kernel function 

when n → ∞ , we use the Taylor expansion of H n ( q ) centred at 

q 0 = 0 

H n (q ) = 

∞ ∑ 

k =0 

�( n 
2 
) 

�( n 
2 

+ k ) k ! 

(
−q 2 

4 

)k 

, (20) 

and by using the substitution q = t 
√ 

n , we can transform it into 

H n (t 
√ 

n ) = 

∞ ∑ 

k =0 

1 

k ! 

(
− t 2 

2 

)k 
�( n 

2 
) n 

k 

�( n 
2 

+ k )2 

k 
. (21) 

For every k ∈ N , it holds that 

lim 

n →∞ 

�( n 
2 
) n 

k 

�( n 
2 

+ k )2 

k 
= 1 , (22) 
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