Contents lists available at [ScienceDirect](http://www.ScienceDirect.com)

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Morphisms on infinite alphabets, countable states automata and regular sequences $^{\scriptscriptstyle \star}$

Jie-Meng Zhang^a, Jin Chen^b, Ying-Jun Guo^{b,}*, Zhi-Xiong Wen^a

^a *School of Science, Wuhan Institute of Technology, Wuhan, 430205, PR China*

^b *Institute of Applied Mathematics, College of Science, Huazhong Agricultural University, Wuhan, 430070, PR China*

a r t i c l e i n f o

Article history: Received 12 October 2016 Revised 8 April 2017 Accepted 8 April 2017

MSC: Primary: 11B85 Secondary: 68R15 11B37

Keywords: Automatic sequence Regular sequence Morphism Countable states automaton Linear recurrence

1. Introduction

Morphisms on a finite alphabet are widely studied in many fields, such as finite automata, symbolic dynamics, formal languages, number theory and also in physics in relation to quasi-crystals (see [\[1,4,8,11,15\]\)](#page--1-0). A morphism is a map $\sigma: \Sigma^* \to \Sigma^*$ satisfying $\sigma(uv) = \sigma(u)\sigma(v)$ for all words $u, v \in \Sigma^*$, where Σ^* is the free moniod generated by a finite alphabet Σ (with ϵ as the neutral element). Naturally, the morphism can be extended to $\Sigma^{\mathbb{N}}$, which is the set of infinite sequences. The morphisms of constant length are called *uniform morphisms* and the sequence $u = u(0)u(1)u(2) \cdots \in \Sigma^{\mathbb{N}}$ satisfying $\sigma(u) = u$ is a *fixed point* of σ .

In [\[12\],](#page--1-0) Cobham showed that a sequence is a fixed point of a uniform morphism (under a coding) if and only if it is an automatic sequence. Recall that a sequence is *automatic* if it can be generated by a finite state automaton. Moreover, a sequence ${u(n)}_{n>0}$ is *k*-automatic if and only if its *k*-kernel is finite, where

A B S T R A C T

In this paper, we prove that a class of regular sequences can be viewed as projections of fixed points of uniform morphisms on a countable alphabet, and also can be generated by countable states automata. Moreover, we prove that the regularity of some regular sequences is invariant under some codings.

© 2017 Elsevier Ltd. All rights reserved.

the *k*-*kernel* is defined by the set of subsequences,

$$
\{ \{u(k^i n + j)\}_{n \ge 0} : i \ge 0, 0 \le j \le k^i - 1 \}.
$$

However, the range of automatic sequences is necessarily finite. To overcome this limit, Allouche and Shallit [\[2\]](#page--1-0) introduced a more general class of regular sequences which take on their values in a (possibly infinite) Noetherian ring *R*. Formally, a sequence is *kregular* if the module generated by its *k*-kernel is finitely generated.

Many regular sequences have been found and studied in [\[3,5,6,21,26,28\].](#page--1-0) If a sequence $\{u(n)\}_{n>0}$ takes finitely many values, Allouche and Shallit showed that it is regular if and only if it is automatic in [\[2\].](#page--1-0) Hence, we always assume that regular sequences take on infinitely many values. If a sequence ${u(n)}_{n\geq0}$ is an unbounded integer regular sequence, Allouche and Shallit [\[2\]](#page--1-0) proved that there exists $c_1 \ge 0$ such that $u(n) = O(n^{c_1})$ for all *n* and Bell et. al^[7]. showed that there exists $c_2 \ge 0$ such that $|u(n)| > c_2 \log n$ infinitely often. Recently, Charlier et. al. characterized the regular sequences by counting the paths in the corresponding graph with finite vertices in [\[10\].](#page--1-0)

Despite all this, there are no descriptions for regular sequences by automata. Note that automatic sequences can be generated by finite state automata, it is a natural question that can regular sequences be generated by automata with countable states, or morphisms on a countable alphabet?

⁻ This research is supported by the Fundamental Research Funds for the Central Universities (Project No. 2662015QC010, [2662015QC016\),](http://dx.doi.org/10.13039/501100001809) and the National Natural Science Foundation of China (Grant Nos. 11501228, 11371156, 11431007, 11626110).

Corresponding author.

E-mail addresses: zhangfanqie@hust.edu.cn (J.-M. Zhang), cj@mail.hzau.edu.cn (J. Chen), guoyingjun2005@126.com (Y.-J. Guo), zhi-xiong.wen@hust.edu.cn (Z.-X. Wen).

Morphisms on infinite alphabets and countable states automata have been studied by many authors. In [\[22\],](#page--1-0) Mauduit concerned the arithmetical and statistical properties of sequences generated by deterministic countable states automata or morphisms on a countable alphabet. Meanwhile, Ferenczi [\[14\]](#page--1-0) studied morphism dynamical systems on infinite alphabets and Le Gonidec [17– 20] studied [complexity](#page--1-0) function for some *q*∞-automatic sequences. More about morphisms on infinite alphabets and countable states automata, please see in [\[9,16,25\]](#page--1-0)

In the present paper, we focus on morphisms on a countable alphabet and automata with countable states. We find a class of automata with countable states which can generate regular sequences. That is to say, a class of regular sequences can be generated by countable states automata.

This paper is organized as follows. In Section 2, we give some notations and definitions. In [Section](#page--1-0) 3, we introduce a class of morphisms on infinite alphabets and countable states automata, which are called to be *m*-periodic *k*-uniform morphism and *m*-periodic *k*-DCAO, respectively. We prove that all the infinite sequences generated by them are *k*-regular. In [Section](#page--1-0) 4, we consider the codings generated by the sequences satisfying a linear recurrence. Under some conditions, we show that the regularity is invariant under these codings. In the last section, we outline some generalizations.

2. Preliminary

Let $\mathbb{N}^{\geq 2}$ be the set of integers greater than 2. For every integer $b \in \mathbb{N}^{\geq 2}$, we define a nonempty alphabet $\Sigma_b := \{0, 1, \dots, b - \}$ 1} and a countable alphabet $\Sigma_{\infty} := \mathbb{N} = \{0, 1, \dots, n, \dots\}$. For $b \in \mathbb{N}$ $\mathbb{N}^{\geq 2} \cup {\infty}$, let Σ_b^* denote the set of all finite words on Σ_b . If $w \in \Sigma_b^*$, then its length is denoted by $|w|$. If $|w| = 0$, then we call *w* is the empty word, denoted by ϵ . Let Σ_b^k denote the set of words of length *k* on Σ_b , i.e., $\Sigma_b^* = \bigcup_{k \geq 0} \Sigma_b^k$. Let $u =$ *u*(0)*u*(1) ··· *u*(*m*) and $v = v(0)v(1) \cdot v(n) \in \Sigma_b^*$. The word *uv* := $u(0)u(1)\cdots u(m)v(0)v(1)\cdots v(n)$ denotes their *concatenation*. If |*u*| \geq 1 (resp. $|v| \geq 1$), then *u* (resp. *v*) is a *prefix* (resp. *suffix*) of *uv*. Clearly, the set Σ_b^* together with the concatenation forms a monoid, where the empty word ϵ plays the role of the neutral element.

If $b \in \mathbb{N}^{\geq 2}$, then every non-negative integer *n* has a unique representation of the form $n = \sum_{i=0}^{\ell} n_i b^i$ with $n_{\ell} \neq 0$ and $n_i \in$ Σ _{*b*}. We call $n_{\ell}n_{\ell-1} \cdots n_0$ its *canonical representation in base b*, denoted by $(n)_b$. If $\ell \ge |(n)_b|$, denote $(n)_b^{\ell} = 0^i(n)_b$ with $i = \ell - |(n)_b|$. If $(n)_b = n_\ell n_{\ell-1} \cdots n_0$, then the *base-b* sum of digits function is defined by $s_b(n) := \sum_{i=0}^{\ell} n_i$. If $b \in \mathbb{N}^{\geq 2}$ and $\mathbf{w} = w_{\ell}w_{\ell-1}\cdots w_0$, then $[\mathbf{w}]_b := \sum_{i=0}^{\ell} w_i \cdot b^i$. We denote by rem_b $(n) := r$ if $n \equiv r \pmod{m}$ *b*) $(0 \le r \le b - 1)$.

In this paper, unless otherwise stated, all alphabets under consideration are countable.

2.1. Morphisms on countable alphabets

Let Σ and Δ be two alphabets. A *morphism* (or *substitution*) is a map σ from Σ^* to Δ^* satisfying $\sigma(uv) = \sigma(u)\sigma(v)$ for all words *u*, $v \in \Sigma^*$. In the whole paper, we use the term "morphism". Note that $\sigma(\epsilon) = \epsilon$. If $\Sigma = \Delta$, then we can iterate the applica-

tion of σ . That is, $\sigma^i(a) = \sigma(\sigma^{i-1}(a))$ for all $i \ge 1$ and $\sigma^0(a) = a$. Let σ be a morphism defined on $\Sigma = \{q_0, q_1, \dots, q_n, \dots\}$. If $\sigma(q_i) = q_{i_1} q_{i_2} \cdots q_{i_{t_i}}$ with $i_j = a_j i + b_j$ and $a_j, b_j \in \mathbb{Z}$, for every $i \geq j$ 0, then σ is called a *linear morphism*. If there exists some integer *k* \geq 1 such that $|\sigma(a)| = k$ for all *a* ∈ Σ, then *σ* is called a *k*-uniform *morphism (or k-constant length morphism)*. A 1-uniform morphism is called a *coding*. If there exists a finite or infinite word $w \in \Sigma^{\mathbb{N}}$ such that $\sigma(w) = w$, then the word *w* is a *fixed point* of σ . In fact, if $\sigma(a) = aw$ for some letter $a \in \Sigma$ and nonempty $w \in \Sigma^*$, then the sequence of words *a*, $\sigma(a)$, $\sigma^2(a)$, \cdots converges to the infinite word

$$
\sigma^{\infty}(a) := a w \sigma(w) \sigma^2(w) \cdots,
$$

where the limit is defined by the metric $d(u, v) = 2^{-min\{i:u(i) \neq v(i)\}}$ for $u = u(0)u(1) \cdots$ and $v = v(0)v(1) \cdots$. Clearly, $\sigma^{\infty}(a)$ is a fixed point of σ. Hence, for every morphism σ on the alphabet Σ , we always assume that there exists a letter $a \in \Sigma$ such that $\sigma(a) = aw$ with a nonempty word $w \in \Sigma^*$.

Example 1. Let $\Sigma = \Sigma_{\infty} := \{0, 1, \dots, n, \dots\}$. Define a 2-uniform morphism $\sigma(i) = i(i+1)$ for all $i \geq 0$, then $\sigma^{\infty}(i) = i(i+1)(i+1)$ 1) $(i+2)$ ··· is a fixed point of σ . In particular, the fixed point $\sigma^{\infty}(0) = 01121223 \cdots$ is the sequence of base-2 sum of digits function ${s_2(n)}_{n>0}$.

Example 2 (The drunken man morphism). Let $\Sigma = \{i\} \cup \mathbb{Z}$. Define a 2-uniform morphism $\sigma(t) = t_1$ and $\sigma(i) = (i - 1)(i + 1)$ for all *i* ∈ \mathbb{Z} , then the infinite word $\sigma^{\infty}(i) = i102(-1)113(-2)0020224...$ is the only non-empty fixed point of σ .

Example 3 (Infinibonacci morphism). Let $\Sigma = N$. Define a 2uniform morphism $\sigma(i) = 0(i + 1)$ for all $i \ge 0$, then $\sigma^{\infty}(0) =$ 0102010301020104 \cdots is a fixed point of σ .

2.2. Deterministic infinite states automata

A *deterministic countable automaton (DCA)* is a directed graph $M = (Q, \Sigma, \delta, q_0, F)$, where *Q* is a countable set of states, $q_0 \in Q$ is the initial state, Σ is the finite input alphabet, $F \subseteq Q$ is the set of accepting states, δ : $Q \times \Sigma \rightarrow Q$ is the transition function. The transition function δ can be extended to $Q \times \Sigma^*$ by $\delta(q, \epsilon) = q$ and $\delta(q, wa) = \delta(\delta(q, w), a)$ for all $q \in Q$, $a \in \Sigma$ and $w \in \Sigma^*$.

Similarly, a *deterministic countable states automaton with output (DCAO)* is defined to be a 6-tuple $M = (Q, \Sigma, \delta, q_0, \Delta, \tau)$, where *Q*, Σ , δ, q_0 are as in the definition of DCA as above, Δ is the output alphabet and $\tau: Q \to \Delta$ is the output function. In particular, if the input alphabet $\Sigma = \Sigma_k$ for some $k \in \mathbb{N}^{\geq 2}$, then the automaton *M* is always called to be a *k*-DCAO.

Let ${u(n)}_{n\geq0} = u(0)u(1)u(2) \cdots$ be a sequence on the alphabet Δ . The sequence $\{u(n)\}_{n\geq 0}$ is called to be *k*-*automatic*, if the sequence can be generated by a *k*-DCAO, that is, there exists a *k*-DCAO $M = (Q, \Sigma_k, \delta, q_0, \Delta, \tau)$ such that $u(n) = \tau(\delta(q_0, w))$ for all $n \geq 0$, $w \in \Sigma_k^*$ and $[w]_k = n$.

By the choice of DCAO *M* satisfying $\delta(q_0, 0) = q_0$, our machine *M* always computes the same *u*(*n*) even if the input one has leading zeros. Hence, unless otherwise stated, all DCAOs satisfy $\delta(q_0, 0) = q_0$ and $u(n) = \tau(\delta(q_0, (n)_k))$ for all $n \ge 0$.

Example 4. Let $Q = \{q_0, q_1, q_2, \dots\}$, $\Delta = \mathbb{N}$, $\delta(q_i, 0) = q_i$, $\delta(q_i, 1) =$ *q*_{*i*+1} and τ (*q_i*) = *i* for all *i* \geq 0. Then, the sequence of base-2 sum of digits function ${s_2(n)}_{n\geq 0}$ is 2-automatic. It can be generated by a 2-DCAO in [Fig.](#page--1-0) 1.

Example 5. Let $Q = \{q_0\} \cup \mathbb{Z}, \Delta = \{\iota\} \cup \mathbb{Z}, \delta(q_0, 0) = q_0, \delta(q_0, 1) =$ 1, $\delta(i, 0) = i - 1$, $\delta(i, 1) = i + 1$, $\tau(q_0) = i$ and $\tau(i) = i$ for all $i \in \mathbb{Z}$. Then, the sequence defined in Example 2 can be generated by a 2-DCAO in [Fig.](#page--1-0) 2.

Example 6. Let $Q = \{q_0, q_1, q_2, \dots\}, \Delta = \mathbb{N}, \delta(q_i, 0) = q_0, \delta(q_i, 1) =$ q_{i+1} and $\tau(q_i) = i$ for all $i \geq 0$. Then, the sequence defined in Example 3 is 2-automatic. It can be generated by a 2-DCAO in [Fig.](#page--1-0) 3.

By the definitions of *k*-uniform morphism and *k*-DCAO, we note that each sequence $\mathbf{u} = \{u(n)\}_{n>0}$ can be generated by a *k*-uniform morphism or a *k*-DCAO for every $k \in \mathbb{N}^{\geq 2}$. In fact, let $\sigma : \mathbb{N} \to \mathbb{N}^*$ be a *k*-uniform morphism defined by $\sigma(i) = (ki)(ki + 1) \cdots (ki + k -$

Download English Version:

<https://daneshyari.com/en/article/5499680>

Download Persian Version:

<https://daneshyari.com/article/5499680>

[Daneshyari.com](https://daneshyari.com/)