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In this paper, we prove that a class of regular sequences can be viewed as projections of fixed points of 

uniform morphisms on a countable alphabet, and also can be generated by countable states automata. 

Moreover, we prove that the regularity of some regular sequences is invariant under some codings. 
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1. Introduction 

Morphisms on a finite alphabet are widely studied in many 

fields, such as finite automata, symbolic dynamics, formal lan- 

guages, number theory and also in physics in relation to quasi- 

crystals (see [1,4,8,11,15] ). A morphism is a map σ : �∗ → �∗

satisfying σ (u v ) = σ (u ) σ (v ) for all words u, v ∈ �∗, where �∗

is the free moniod generated by a finite alphabet � (with ε as 

the neutral element). Naturally, the morphism can be extended 

to �N , which is the set of infinite sequences. The morphisms of 

constant length are called uniform morphisms and the sequence 

u = u (0) u (1) u (2) · · · ∈ �N satisfying σ (u ) = u is a fixed point of σ . 

In [12] , Cobham showed that a sequence is a fixed point of 

a uniform morphism (under a coding) if and only if it is an au- 

tomatic sequence. Recall that a sequence is automatic if it can 

be generated by a finite state automaton. Moreover, a sequence 

{ u ( n )} n ≥0 is k -automatic if and only if its k -kernel is finite, where 
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the k - kernel is defined by the set of subsequences, {{ u (k i n + j) } n ≥0 : i ≥ 0 , 0 ≤ j ≤ k i − 1 

}
. 

However, the range of automatic sequences is necessarily finite. 

To overcome this limit, Allouche and Shallit [2] introduced a more 

general class of regular sequences which take on their values in 

a (possibly infinite) Noetherian ring R . Formally, a sequence is k - 

regular if the module generated by its k -kernel is finitely generated. 

Many regular sequences have been found and studied in 

[3,5,6,21,26,28] . If a sequence { u ( n )} n ≥0 takes finitely many values, 

Allouche and Shallit showed that it is regular if and only if it is 

automatic in [2] . Hence, we always assume that regular sequences 

take on infinitely many values. If a sequence { u ( n )} n ≥0 is an un- 

bounded integer regular sequence, Allouche and Shallit [2] proved 

that there exists c 1 ≥ 0 such that u (n ) = O (n c 1 ) for all n and Bell 

et. al [7] . showed that there exists c 2 ≥ 0 such that | u ( n )| > c 2 log n 

infinitely often. Recently, Charlier et. al. characterized the regular 

sequences by counting the paths in the corresponding graph with 

finite vertices in [10] . 

Despite all this, there are no descriptions for regular sequences 

by automata. Note that automatic sequences can be generated by 

finite state automata, it is a natural question that can regular se- 

quences be generated by automata with countable states, or mor- 

phisms on a countable alphabet? 
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Morphisms on infinite alphabets and countable states automata 

have been studied by many authors. In [22] , Mauduit concerned 

the arithmetical and statistical properties of sequences generated 

by deterministic countable states automata or morphisms on a 

countable alphabet. Meanwhile, Ferenczi [14] studied morphism 

dynamical systems on infinite alphabets and Le Gonidec [17–

20] studied complexity function for some q ∞ -automatic sequences. 

More about morphisms on infinite alphabets and countable states 

automata, please see in [9,16,25] 

In the present paper, we focus on morphisms on a countable 

alphabet and automata with countable states. We find a class of 

automata with countable states which can generate regular se- 

quences. That is to say, a class of regular sequences can be gen- 

erated by countable states automata. 

This paper is organized as follows. In Section 2 , we give some 

notations and definitions. In Section 3 , we introduce a class of mor- 

phisms on infinite alphabets and countable states automata, which 

are called to be m -periodic k -uniform morphism and m -periodic k - 

DCAO, respectively. We prove that all the infinite sequences gener- 

ated by them are k -regular. In Section 4 , we consider the codings 

generated by the sequences satisfying a linear recurrence. Under 

some conditions, we show that the regularity is invariant under 

these codings. In the last section, we outline some generalizations. 

2. Preliminary 

Let N 

≥2 be the set of integers greater than 2. For every inte- 

ger b ∈ N 

≥2 , we define a nonempty alphabet �b := { 0 , 1 , · · · , b −
1 } and a countable alphabet �∞ 

:= N = { 0 , 1 , · · · , n, · · · } . For b ∈ 

N 

≥2 ∪ {∞} , let �∗
b 

denote the set of all finite words on �b . If 

w ∈ �∗
b 
, then its length is denoted by | w |. If | w | = 0 , then we 

call w is the empty word, denoted by ε. Let �k 
b 

denote the 

set of words of length k on �b , i.e., �∗
b 

= 

⋃ 

k ≥0 �
k 
b 

. Let u = 

u (0) u (1) · · · u (m ) and v = v (0) v (1) · · · v (n ) ∈ �∗
b 

. The word uv := 

u (0) u (1) ���u ( m ) v (0) v (1) ���v ( n ) denotes their concatenation . If | u | 

≥ 1 (resp. | v | ≥ 1), then u (resp. v ) is a prefix (resp. suffix ) of 

uv . Clearly, the set �∗
b 

together with the concatenation forms a 

monoid, where the empty word ε plays the role of the neutral el- 

ement. 

If b ∈ N 

≥2 , then every non-negative integer n has a unique 

representation of the form n = 

∑ � 
i =0 n i b 

i with n � 	 = 0 and n i ∈ 

�b . We call n � n � −1 · · · n 0 its canonical representation in base b , de- 

noted by ( n ) b . If � ≥ |( n ) b |, denote (n ) � 
b 

= 0 i (n ) b with i = � − | (n ) b | . 
If (n ) b = n � n � −1 · · · n 0 , then the base-b sum of digits function is de- 

fined by s b (n ) := 

∑ � 
i =0 n i . If b ∈ N 

≥2 and w = w � w � −1 · · · w 0 , then 

[ w ] b := 

∑ � 
i =0 w i · b i . We denote by rem b ( n ) := r if n ≡ r ( mod 

b) (0 ≤ r ≤ b − 1) . 

In this paper, unless otherwise stated, all alphabets under con- 

sideration are countable. 

2.1. Morphisms on countable alphabets 

Let � and � be two alphabets. A morphism (or substitution) 

is a map σ from �∗ to �∗ satisfying σ (u v ) = σ (u ) σ (v ) for all 

words u, v ∈ �∗. In the whole paper, we use the term “morphism”. 

Note that σ (ε) = ε. If � = �, then we can iterate the applica- 

tion of σ . That is, σ i (a ) = σ (σ i −1 (a )) for all i ≥ 1 and σ 0 (a ) = a. 

Let σ be a morphism defined on � = { q 0 , q 1 , · · · , q n , · · · } . If 

σ (q i ) = q i 1 q i 2 · · · q i t i 
with i j = a j i + b j and a j , b j ∈ Z , for every i ≥

0, then σ is called a linear morphism . If there exists some integer k 

≥ 1 such that | σ (a ) | = k for all a ∈ �, then σ is called a k-uniform 

morphism (or k-constant length morphism) . A 1-uniform morphism 

is called a coding. If there exists a finite or infinite word w ∈ �N 

such that σ (w ) = w, then the word w is a fixed point of σ . In fact, 

if σ (a ) = aw for some letter a ∈ � and nonempty w ∈ �∗, then 

the sequence of words a, σ ( a ), σ 2 ( a ), ��� converges to the infinite 

word 

σ∞ (a ) := awσ (w ) σ 2 (w ) · · · , 

where the limit is defined by the metric d(u, v ) = 2 −min { i : u (i ) 	 = v (i ) } 
for u = u (0) u (1) · · · and v = v (0) v (1) · · · . Clearly, σ∞ ( a ) is a fixed 

point of σ . Hence, for every morphism σ on the alphabet �, we 

always assume that there exists a letter a ∈ � such that σ (a ) = aw 

with a nonempty word w ∈ �∗. 

Example 1. Let � = �∞ 

:= { 0 , 1 , · · · , n, · · · } . Define a 2-uniform 

morphism σ (i ) = i (i + 1) for all i ≥ 0, then σ∞ (i ) = i (i + 1)(i + 

1)(i + 2) · · · is a fixed point of σ . In particular, the fixed point 

σ∞ (0) = 01121223 · · · is the sequence of base-2 sum of digits func- 

tion { s 2 ( n )} n ≥0 . 

Example 2 (The drunken man morphism) . Let � = { ι} ∪ Z . Define 

a 2-uniform morphism σ (ι) = ι1 and σ (i ) = (i − 1)(i + 1) for all 

i ∈ Z , then the infinite word σ∞ (ι) = ι102(−1)113(−2)0020224 · · ·
is the only non-empty fixed point of σ . 

Example 3 (Infinibonacci morphism) . Let � = N . Define a 2- 

uniform morphism σ (i ) = 0(i + 1) for all i ≥ 0, then σ∞ (0) = 

0102010301020104 · · · is a fixed point of σ . 

2.2. Deterministic infinite states automata 

A deterministic countable automaton (DCA) is a directed graph 

M = (Q, �, δ, q 0 , F ) , where Q is a countable set of states, q 0 ∈ Q is 

the initial state, � is the finite input alphabet, F ⊆ Q is the set 

of accepting states, δ: Q × � → Q is the transition function. The 

transition function δ can be extended to Q × �∗ by δ(q, ε) = q and 

δ(q, wa ) = δ(δ(q, w ) , a ) for all q ∈ Q, a ∈ � and w ∈ �∗. 

Similarly, a deterministic countable states automaton with output 

(DCAO) is defined to be a 6-tuple M = (Q, �, δ, q 0 , �, τ ) , where Q, 

�, δ, q 0 are as in the definition of DCA as above, � is the output 

alphabet and τ : Q → � is the output function. In particular, if the 

input alphabet � = �k for some k ∈ N 

≥2 , then the automaton M is 

always called to be a k -DCAO. 

Let { u (n ) } n ≥0 = u (0) u (1) u (2) · · · be a sequence on the alpha- 

bet �. The sequence { u ( n )} n ≥0 is called to be k - automatic , if the 

sequence can be generated by a k -DCAO, that is, there exists a k - 

DCAO M = (Q, �k , δ, q 0 , �, τ ) such that u (n ) = τ (δ(q 0 , w )) for all 

n ≥ 0 , w ∈ �∗
k 

and [ w ] k = n . 

By the choice of DCAO M satisfying δ(q 0 , 0) = q 0 , our ma- 

chine M always computes the same u ( n ) even if the input one 

has leading zeros. Hence, unless otherwise stated, all DCAOs sat- 

isfy δ(q 0 , 0) = q 0 and u (n ) = τ (δ(q 0 , (n ) k )) for all n ≥ 0. 

Example 4. Let Q = { q 0 , q 1 , q 2 , · · · } , � = N , δ(q i , 0) = q i , δ(q i , 1) = 

q i +1 and τ (q i ) = i for all i ≥ 0. Then, the sequence of base-2 sum 

of digits function { s 2 ( n )} n ≥0 is 2-automatic. It can be generated by 

a 2-DCAO in Fig. 1 . 

Example 5. Let Q = { q 0 } ∪ Z , � = { ι} ∪ Z , δ(q 0 , 0) = q 0 , δ(q 0 , 1) = 

1 , δ(i, 0) = i − 1 , δ(i, 1) = i + 1 , τ (q 0 ) = ι and τ (i ) = i for all i ∈ Z . 

Then, the sequence defined in Example 2 can be generated by a 

2-DCAO in Fig. 2 . 

Example 6. Let Q = { q 0 , q 1 , q 2 , · · · } , � = N , δ(q i , 0) = q 0 , δ(q i , 1) = 

q i +1 and τ (q i ) = i for all i ≥ 0. Then, the sequence defined in 

Example 3 is 2-automatic. It can be generated by a 2-DCAO in 

Fig. 3 . 

By the definitions of k -uniform morphism and k -DCAO, we note 

that each sequence u = { u (n ) } n ≥0 can be generated by a k -uniform 

morphism or a k -DCAO for every k ∈ N 

≥2 . In fact, let σ : N → N 

∗ be 

a k -uniform morphism defined by σ (i ) = (ki )(ki + 1) · · · (ki + k −
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