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1. Introduction

Morphisms on a finite alphabet are widely studied in many
fields, such as finite automata, symbolic dynamics, formal lan-
guages, number theory and also in physics in relation to quasi-
crystals (see [1,4,8,11,15]). A morphism is a map o: ¥* — X*
satisfying o (uv) = o (u)o (v) for all words u, v € X*, where X*
is the free moniod generated by a finite alphabet ¥ (with € as
the neutral element). Naturally, the morphism can be extended
to £V, which is the set of infinite sequences. The morphisms of
constant length are called uniform morphisms and the sequence
u=u@u(u2)--- e =N satisfying o (1) = u is a fixed point of o.

In [12], Cobham showed that a sequence is a fixed point of
a uniform morphism (under a coding) if and only if it is an au-
tomatic sequence. Recall that a sequence is automatic if it can
be generated by a finite state automaton. Moreover, a sequence
{u(n)}ys0 is k-automatic if and only if its k-kernel is finite, where
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the k-kernel is defined by the set of subsequences,
{{u(kin + )Ins0:i>0,0=<j< ki — ]},

However, the range of automatic sequences is necessarily finite.
To overcome this limit, Allouche and Shallit [2] introduced a more
general class of regular sequences which take on their values in
a (possibly infinite) Noetherian ring R. Formally, a sequence is k-
regular if the module generated by its k-kernel is finitely generated.

Many regular sequences have been found and studied in
[3,5,6,21,26,28]. If a sequence {u(n)},-o takes finitely many values,
Allouche and Shallit showed that it is regular if and only if it is
automatic in [2]. Hence, we always assume that regular sequences
take on infinitely many values. If a sequence {u(n)},-o is an un-
bounded integer regular sequence, Allouche and Shallit [2] proved
that there exists ¢; > 0 such that u(n) = 0(n“) for all n and Bell
et. al[7]. showed that there exists c; > 0 such that |u(n)| > c;logn
infinitely often. Recently, Charlier et. al. characterized the regular
sequences by counting the paths in the corresponding graph with
finite vertices in [10].

Despite all this, there are no descriptions for regular sequences
by automata. Note that automatic sequences can be generated by
finite state automata, it is a natural question that can regular se-
quences be generated by automata with countable states, or mor-
phisms on a countable alphabet?
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Morphisms on infinite alphabets and countable states automata
have been studied by many authors. In [22], Mauduit concerned
the arithmetical and statistical properties of sequences generated
by deterministic countable states automata or morphisms on a
countable alphabet. Meanwhile, Ferenczi [14] studied morphism
dynamical systems on infinite alphabets and Le Gonidec [17-
20] studied complexity function for some g>-automatic sequences.
More about morphisms on infinite alphabets and countable states
automata, please see in [9,16,25]

In the present paper, we focus on morphisms on a countable
alphabet and automata with countable states. We find a class of
automata with countable states which can generate regular se-
quences. That is to say, a class of regular sequences can be gen-
erated by countable states automata.

This paper is organized as follows. In Section 2, we give some
notations and definitions. In Section 3, we introduce a class of mor-
phisms on infinite alphabets and countable states automata, which
are called to be m-periodic k-uniform morphism and m-periodic k-
DCAO, respectively. We prove that all the infinite sequences gener-
ated by them are k-regular. In Section 4, we consider the codings
generated by the sequences satisfying a linear recurrence. Under
some conditions, we show that the regularity is invariant under
these codings. In the last section, we outline some generalizations.

2. Preliminary

Let N=2 be the set of integers greater than 2. For every inte-
ger b e N22, we define a nonempty alphabet %, :={0,1,---,b—
1} and a countable alphabet ¥, :=N={0,1,---,n,---}. For be
N22 U {oo}, let %} denote the set of all finite words on Xj. If
we X;, then its length is denoted by |w|. If |w| =0, then we

call w is the empty word, denoted by €. Let E,’J‘ denote the

set of words of length k on X, ie, i =0 Zf. Let u=
u(Qu(1)---u(m) and v=v(0)v(1)---v(n) € £;. The word uv :=
u(0)u(1)---u(m)v(0)v(1)---v(n) denotes their concatenation. If |u|
> 1 (resp. |v| > 1), then u (resp. v) is a prefix (resp. suffix) of
uv. Clearly, the set X} together with the concatenation forms a
monoid, where the empty word € plays the role of the neutral el-
ement.

If be N22, then every non-negative integer n has a unique
representation of the form n=Y{_,n;b' with n, # 0 and n;
Y. We call ngny_q ---ng its canonical representation in base b, de-
noted by (n)y. If £ > |(n),|, denote (n)! = 0i(n), with i = ¢ — |(n)|.
If (n), =ngny_q---ng, then the base-b sum of digits function is de-
fined by sp(n) := Zf=0 n;. If be NZ2 and w=w,w,_q---wp, then
W] := Y w;-bl. We denote by remy(n) := r if n=r (mod
b) 0O<r<b-1).

In this paper, unless otherwise stated, all alphabets under con-
sideration are countable.

2.1. Morphisms on countable alphabets

Let ¥ and A be two alphabets. A morphism (or substitution)
is a map o from X* to A* satisfying o (uv) = o (u)o (v) for all
words u, v € ¥*. In the whole paper, we use the term “morphism”.

Note that o(¢) = €. If ¥ = A, then we can iterate the applica-
tion of o. That is, oi(a) = o (ci~1(a)) for all i > 1 and 0%(a) = a.

Let o be a morphism defined on X ={qo.q1.--.qn.---}. If
o(q) = G, Gi, - i with i; =aji+b; and aj,bj € Z, for every i >
0, then o is called a linear morphism. If there exists some integer k
> 1 such that |o(a)| = k for all a € X, then o is called a k-uniform
morphism (or k-constant length morphism). A 1-uniform morphism
is called a coding. If there exists a finite or infinite word w ¢ XN
such that o (w) = w, then the word w is a fixed point of o. In fact,
if o(a) = aw for some letter a € ¥ and nonempty w € X*, then

the sequence of words a, o(a), o2(a), ---
word

converges to the infinite

o> (a) := awo (W)o*(w) - -,

where the limit is defined by the metric d(u, v) = 2-min{tu@®v()}
for u=u(0)u(1)--- and v=v(0)v(1)---. Clearly, c>(a) is a fixed
point of o. Hence, for every morphism o on the alphabet X, we
always assume that there exists a letter a € ¥ such that o (a) = aw
with a nonempty word w € X*.

Example 1. Let ¥ = X :={0,1,---,n,---}. Define a 2-uniform
morphism o (i) =i(i+1) for all i > 0, then o> @{) =i(i+1)({i+
1)(i+2)--- is a fixed point of o. In particular, the fixed point
0> (0) = 01121223 - - - is the sequence of base-2 sum of digits func-

tion {Sz(n)}nzo'

Example 2 (The drunken man morphism). Let ¥ = {¢} U Z. Define
a 2-uniform morphism o (t) =1 and o (i) = (i—1)(i+ 1) for all
i € Z, then the infinite word 0®°(t) = 1102(—1)113(-2)0020224 - - -
is the only non-empty fixed point of o.

Example 3 (Infinibonacci morphism). Let ¥ =N. Define a 2-
uniform morphism o (i) =0(i+1) for all i > 0, then 0*(0) =
0102010301020104 - - - is a fixed point of o.

2.2. Deterministic infinite states automata

A deterministic countable automaton (DCA) is a directed graph
M= (Q, %,4,qo,F), where Q is a countable set of states, gy € Q is
the initial state, ¥ is the finite input alphabet, F € Q is the set
of accepting states, §: Q x ¥ — Q is the transition function. The
transition function § can be extended to Q x X* by §(q. €) = q and
6(q,wa) =8(5(q,w),a) forallge Q ae ¥ and w € X*.

Similarly, a deterministic countable states automaton with output
(DCAO) is defined to be a 6-tuple M = (Q, X, 8, qg, A, T), where Q,
%, 8, qo are as in the definition of DCA as above, A is the output
alphabet and 7:Q — A is the output function. In particular, if the
input alphabet ¥ = ¥ for some k € N2, then the automaton M is
always called to be a k-DCAO.

Let {u(n)}y-0 = u(0)u(1)u(2)--- be a sequence on the alpha-
bet A. The sequence {u(n)},-o is called to be k-automatic, if the
sequence can be generated by a k-DCAO, that is, there exists a k-
DCAO M = (Q, %4, 8, qo, A, T) such that u(n) = t(8(gg, w)) for all
n>0weX; and [w], =n.

By the choice of DCAO M satisfying &(qg,0) = qg, our ma-
chine M always computes the same u(n) even if the input one
has leading zeros. Hence, unless otherwise stated, all DCAOs sat-
isfy 8(qo, 0) = qo and u(n) = t(8(qop, (n),)) for all n > 0.

Example 4. Let Q ={qo.q1.G2,---}, A =N, 8(q;.0) = ;. 8(q;. 1) =
giy1 and ©(q;) =i for all i > 0. Then, the sequence of base-2 sum
of digits function {s,(n)},>o is 2-automatic. It can be generated by
a 2-DCAO in Fig. 1.

Example 5. Let Q = {qo}UZ, A ={t}UZ,§(q0,0) =qg,5(qp, 1) =
1,63,0)=i—-1,8(1,1)=i+1, t(qo) =t and t(i) =i for all i € Z.
Then, the sequence defined in Example 2 can be generated by a
2-DCAO in Fig. 2.

Example 6. Let Q ={qo.q1.q2.--}, A=N.5(q;.0) =qo.5(q;. 1) =
giy1 and t©(q;) =i for all i > 0. Then, the sequence defined in
Example 3 is 2-automatic. It can be generated by a 2-DCAO in
Fig. 3.

By the definitions of k-uniform morphism and k-DCAO, we note
that each sequence u = {u(n)},-o can be generated by a k-uniform
morphism or a k-DCAO for every k € N2, In fact, let o : N — N* be
a k-uniform morphism defined by o (i) = (ki)(ki+1)--- (ki +k —
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