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a b s t r a c t 

Using both analytical and numerical methods, global dynamics including subharmonic bifurcations and 

chaotic motions for a class of inverted pendulum system are investigated in this paper. The expressions 

of the heteroclinic orbits and periodic orbits are obtained analytically. Chaos arising from heteroclinic 

intersections is studied with the Melnikov method. The critical curves separating the chaotic and non- 

chaotic regions are obtained. The conditions for subharmonic bifurcations are also obtained. It is proved 

that the system can be chaotically excited through finite subharmonic bifurcations. Some new dynamical 

phenomena are presented. Numerical simulations are given, which verify the analytical results. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The inverted pendulum system has wide applications in preci- 

sion instruments, robot control, missile intercept control system, 

spacecraft attitude control and so on. Therefore, it is of great sig- 

nificance to study nonlinear dynamics of this system. A lot of re- 

sults on this subject have been obtained in the past two decades. 

Bifurcations in the inverted pendulum system have been inves- 

tigated by many researchers in the past years. Via the normal form 

theory, perturbation analysis and equivariant singularity theory, a 

reversible bifurcation analysis of the inverted pendulum was given 

by Broer et al. [1] . Using an approximating integrable normal form 

and equivariant singularity theory, Broer et al. [2] studied the qual- 

itative dynamics of the Poincar ́e map corresponding to the central 

periodic solution and bifurcations of the inverted pendulum sys- 

tem. Ponce et al. [17] investigated bifurcations of an inverted pen- 

dulum with saturated Hamiltonian control laws. Periodic solutions 

and bifurcations in an impact inverted pendulum under impulsive 

excitation were investigated by Lenci and Rega [12] . It was found 

that the existence and the stability of the cycles depended on 

both classical (saddle-node and period-doubling) and non-classical 

bifurcations. With a quantitative theory together with numerical 

simulations, Butikov [4] studied the dynamic stabilization of an 

inverted pendulum. The dynamics of an inverted pendulum sub- 

jected to high-frequency excitation was studied by Yabuno et al. 

[22] . The stability of the stable equilibrium states under the effect 
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of the tilt was discussed non-locally. An analogy of the bifurcation 

of the inverted pendulum to that of the buckling phenomenon was 

also presented. By using the method of multiple scales and numer- 

ical simulations, Yang et al. [23] investigated stability and Hopf bi- 

furcation in an inverted pendulum with delayed feedback control. 

Via multiple delayed proportional gains, Boussaada et al. [3] stud- 

ied a codimension-three triple zero bifurcation of an inverted pen- 

dulum on a cart moving horizontally. Using the centre manifold, 

Sieber and Krauskopf [18] investigated a codimension-three triple- 

zero eigenvalue bifurcation of an inverted pendulum with delayed 

feedback control. Using a center manifold reduction, Landry et al. 

[9] investigated local dynamics of an inverted pendulum with de- 

layed feedback control. It was shown that the system undergoes 

a supercritical Hopf bifurcation at the critical delay. Employing a 

combination of analytical and numerical methods, the stability and 

bifurcations of two types of double impact periodic orbits for an 

inverted pendulum impacting between two rigid walls were stud- 

ied by Shen and Du [19] . Especially, grazing bifurcations were pre- 

sented there. 

Chaotic motions of the inverted pendulum system have been 

also investigated in the past years. With numerical methods, Kim 

and Hu [8] studied bifurcations and transitions to chaos in an in- 

verted pendulum. It was found that an infinite sequence of period- 

doubling bifurcations, leading to chaos, followed each destabiliza- 

tion of the inverted state. By using a Neyman–Pearson lemma 

like technique, Lenci [10] investigated the suppression of chaos by 

means of bounded excitations in an inverted pendulum. With ex- 

perimental methods, Chen et al. [5] studied chaotic motions of 

a inverted pendulum system. It was found that the system may 
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Fig. 1. The physical model of the inverted pendulum. 

undergo chaos through period doubling bifurcations. Via a sys- 

tematic numerical investigation method, Lenci et al. [11] studied 

the nonlinear dynamics of an inverted pendulum between lat- 

eral rebounding harriers. Three different families of considerably 

variable attractors-periodic, chaotic, and rest positions with sub- 

sequent chattering were found. Employing the harmonic balance 

method and Melnikov theory, nonlinear dynamics of an inverted 

pendulum driven by airflow was investigated by Nbendjo [14] . 

Horseshoes chaos may exist in this system. With the Melnikov 

method, homoclinic bifurcation for a nonlinear inverted pendulum 

impacting between two rigid walls under external quasi periodic 

excitations was analyzed by Gao and Du [7] . Smale horseshoe-type 

chaotic dynamics may occur in this system. Via Poincar ́e maps, 

Gandhi and Meena [6] studied chaotic dynamics of an inverted 

flexible pendulum with tip mass. By means of the normal form 

theory, the Melnikov method and numerical methods, Perez-Polo 

et al. [16] studied the stability and chaotic behavior of a plus inte- 

gral plus derivative (PID) controlled inverted pendulum subjected 

to harmonic base excitations. It was shown that when the pendu- 

lum was close to the unstable pointing-up position, the PID param- 

eters were changed and the chaotic motion was destroyed. 

In this paper, global dynamics including subharmonic bifurca- 

tions and chaotic motions for a class of inverted pendulum sys- 

tem are investigated analytically with the subharmonic Melnikov 

method and Melnikov method, respectively. The mechanism and 

parameter conditions of chaotic motions are obtained rigorously. 

The critical curves separating the chaotic and non-chaotic regions 

are plotted. The chaotic feature on the system parameters is dis- 

cussed in detail. The conditions for subharmonic bifurcations are 

also presented. It is proved that the system can be chaotically ex- 

cited through finite subharmonic bifurcations. Numerical simula- 

tions verify the analytical results. 

2. The dynamic model and analysis of the orbits for the 

inverted pendulum 

Considering the model as in Fig. 1 , assuming O is the center of 

the reciprocating motion for the system, choosing this point as the 

origin of the inertial coordinate system and the connection point 

of the inverted pendulum rod and the trolley as the origin of the 

non inertial coordinate system, then the dynamic equation of the 

ball in the non inertial coordinate system is [5] 

d 

2 θ

d τ 2 
= sin θ − ˜ k θ − γ

d θ

d τ
+ A cos θ cos ωτ (1) 

where τ = 

√ 

g 
R t, 

˜ k = 

k ′ a 2 
mgR , ω = ω d / 

√ 

g/R , k ′ is the elastic coef- 

ficient of the spring, γ = 

˜ γ

m 

√ 

g/R 
, ˜ γ is the damping coefficient, 

A = r 0 ω 

2 
d 
/g = 

r 0 
R ω 

2 ≡ fω 

2 , r 0 is the excitation amplitude, R is the 

length of the pendulum, ω d is the angular frequency of motor. De- 

noting θ = x, then system (1) is written as follows : ⎧ ⎪ ⎨ 

⎪ ⎩ 

d x 

d τ
= y 

d y 

d τ
= sin x − ˜ k x − γ y + fω 

2 cos x cos ωτ

(2) 

Assuming the elastic coefficient of the spring together with the 

damping coefficient and the parameter f are small, setting ˜ k = ε ̄k , 
γ = ε ̄γ , f = ε ̄f , system (2) can be written as ⎧ ⎪ ⎨ 

⎪ ⎩ 

d x 

d τ
= y 

d y 

d τ
= sin x − ε ̄k x − ε ̄γ y + ε ̄f ω 

2 cos x cos ωτ

(3) 

When ε = 0 , the unperturbed system of (3) is ⎧ ⎪ ⎨ 

⎪ ⎩ 

d x 

d τ
= y 

d y 

d τ
= sin x 

(4) 

which is a planar Hamiltonian system with the Hamiltonian 

H(x, y ) = 

y 2 

2 

+ cos (x ) − 1 ≡ h (5) 

System (4) has saddles (2 lπ, 0)(l = 0 , ±1 , ±2 , · · · ), and centers 

((2 l + 1) π, 0)(l = 0 , ±1 , ±2 , · · · ). There exists a pair of heteroclinic 

orbits connecting (2 l π , 0)) to ((2 l + 2) π, 0) when h = 0 . Due to 

the periodic symmetry, we just need to consider the dynamic be- 

haviors of the system on the interval [0, 2 π ] of the x -axis. In this 

case, system (4) has two saddles O (0, 0), A (2 π , 0), and one center 

B ( π , 0). To solve the expressions of the heteroclinic orbits, setting 

h = 0 in (5) one can obtain that 

d x 

d τ
= y = ±

√ 

2(1 − cos x ) (6) 

Separating variables for (6) and integrating, we can get 

tan 

(
x 

4 

)
= e ±τ (7) 

Therefore we can obtain the expressions of the homoclinic orbits 

as follows 

�+ : 

{
x + (τ ) = 4 arctan (e τ ) 
y + (τ ) = 2 sech (τ ) 

(8) 

�− : 

{
x −(τ ) = 4 arctan (e −τ ) 
y −(τ ) = −2 sech (τ ) 

(9) 

There also exist a family of periodic orbits 	±( k ) around the center 

B inside �± for −2 < h < 0 . To solve the expressions of the periodic 

orbits, we rewrite (5) as follows 

cos x = (h + 1) − y 2 

2 

(10) 

consequently, 

1 − sin 

2 
x = 

y 4 

4 

− (h + 1) y 2 + (h + 1) 2 (11) 

i.e., 

d y 

d τ
= 

1 

C 
(C 2 − y 2 )(k ′ 2 C 2 + k 2 y 2 ) (12) 

where k ′ = 

√ 

1 − k 2 . Comparing the coefficients of like powers, we 

can obtain that 

C = ±2 k, h = 2(k 2 − 1) (13) 
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