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a b s t r a c t 

We study the propagation properties of nonlinear pulses with periodic evolution in a dispersion-managed 

transmission link by means of a variational approach. We fit the energy enhancement required for sta- 

ble propagation of a single soliton in a prototypical commercial link to a polynomial approximation that 

describes the dependence of the energy on the map strength of the normalized unit cell. We present an 

improvement of a relatively old and essential result, namely, the dependence of the energy-enhancement 

factor of dispersion-management solitons with the square of the map strength of the fiber link. We find 

that adding additional corrections to the conventional quadratic formula up to the fourth order results 

in an improvement in the accuracy of the description of the numerical results obtained with the varia- 

tional approximation. Even a small error in the energy is found to introduce large deviations in the pulse 

parameters during its evolution. The error in the evaluation of the interaction distance between two ad- 

jacent time division multiplexed pulses propagating in the same channel in a prototypical submarine link 

is of the same order as the error in the energy. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, solitons have been an active research area in 

physics and mathematics and have played an important role in 

condensed matter physics and nonlinear optics [1–3] . In nonlinear 

optics many local nonlinear media structures have been exten- 

sively studied, such as spatial and spatiotemporal solitons [4] , 

vortex solitons, light bullets and breathers [5] , with applications in 

dense wavelength division multiplexing, soliton supercontinuum 

generation, new soliton lasers design, etc. 

It is well known that soliton pulses have excellent properties 

as information carriers in high bit-rates and long distance optical 

transmission links both for time-division and wavelength-division 

multiplexing systems (TDM and WDM, respectively) [6] . Optical 

soliton communication relies on the exact balance between the 

group velocity dispersion (GVD) and the self-phase modulation 

(SPM) of the pulse along the transmission link. When combined 

with the Dispersion Management (DM) technique, consisting on a 

periodic alternation of fiber segments with normal and anomalous 

dispersion, the transmission distance of these kind of optical 

transmission systems can reach several thousand kilometers and 

their bit rates tenths of Gb/s [7] . This advantage comes from the 
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fact that there is an energy enhancement compared with that of 

the conventional soliton [8–11] that raises the signal-to-noise ratio 

(SNR) and reduces the noise induced timing jitter and other ben- 

eficial features of DM, such as the reduction of the impact of four 

wave mixing (FWM) effects. Unlike constant dispersion networks, 

where there is no change in the pulse shape, in DM networks 

the pulse width oscillates periodically and the shape of the pulse 

ranges from hyperbolic secant to Gaussian, depending on the 

strength of the dispersion management, defined as the difference 

between normal and anomalous values of the local dispersion �D 

[7] . In general, optical fiber links with strong dispersion manage- 

ment (10 < Z 0 �D < 45), where the pulse is well defined by means 

of a Gaussian ansatz, combined with fiber segments with positive 

GVD-sign, are one of the most promising candidates for next gen- 

eration telecommunication networks. However, there are several 

system penalties associated with DM propagation even in a single 

frequency channel. One of the most important arises from a large 

pulse stretching associated with the increase in the pulse energy 

and breathing within one dispersion period accompanied with an 

overlap of neighboring pulses that causes a reduction in the inter- 

action distance [12] . And as we are moving towards narrower pulse 

widths, up to picosecond and even femtosecond time slots, higher- 

order dispersion effects, such as third-order dispersion (TOD) 

and nonlinearity, must be considered. Both of them determine a 

significant enhancement of the Gordon–Haus effect and the timing 

jitter and also induce crosstalk [13,14] . Due to all these restrictions, 
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a precise knowledge of the initial pulse energy is critical to deter- 

mine stable pulse transmission in the design of a DM optical link. 

In this work, we consider polynomial higher-order approx- 

imations for the improved accuracy description of the power 

enhancement factor of single optical soliton pulses as a function 

of the physical characteristics of the optical fiber link. Previous 

well known works have used a quadratic formula for the power 

enhancement based on the second order path averaged Group 

Velocity Dispersion (GVD) and the initial pulse energy of a soliton 

of equal full width half-maximum (FWHM) in a uniform fiber with 

the same path-average dispersion and nonlinear coefficient [9] . 

This formula has been used extensively to examine the asymptotic 

limit where the dispersion-map period is shorter than the fiber’s 

nonlinear length scale [15] , to obtain the degree to which the 

pulse energy must be enhanced to maintain any given initial pulse 

width [16] , to model the interactions in optical fibers [17] and for 

different am plifier locations inside the dispersion map in lossy 

systems [18,19] . Now, we analyze the approximation error in this 

type of polynomial expression as new higher-order terms are 

introduced in the Generalized Nonlinear Schrödinger Equation 

(GNLS) for a specific and prototypical commercial submarine net- 

work. The results shows that at fourth order a good compromise 

between accuracy and complexity can be obtained with an impact 

on the estimation of the interaction distance between two solitons 

of the same order of magnitude. The impact on the pulse inverse 

width, on the other hand, can be very large. 

The paper is arranged as follows. In Section 2 , we study the 

mathematical model that describes the propagation of soliton 

pulses through the well-known Generalized Nonlinear Schrödinger 

Equation (GNLS) and we obtain the reduced ordinary differen- 

tial equations (ODE) model by means of a variational method 

[20] which takes into account third order dispersion [21] . In 

Section 3 , we compare the DM single soliton energy required to 

obtain stable pulse propagation obtained through the variational 

approximation with that obtained when taking into account higher 

order scaling corrections in the classical quadratic formula that 

describes the dependence of the energy enhancement factor with 

the map strength. In Section 4 , using the ODEs obtained through 

the variational approximation, we extend the analysis and compare 

the interaction distances of two simultaneously propagating pulses 

with initial energy obtained in the ODE model, with those dis- 

tances obtained when the values of energy obtained with higher- 

order correction terms in the analytical equation are considered. 

Finally, in Section 5 , we present the conclusions of our work. 

2. Ordinary differential equations model 

We analyze a DM optical fiber made up of alternating seg- 

ments of equal length with normal and anomalous dispersion. 

In our analysis, we consider a lossless time-division multiplexed 

system and study a couple of adjacent pulses propagating in 

the same channel. We employ a well-known variational method 

[20,22] which permits to reduce the full complexity of the GNLS 

to that of a system of ODEs which capture the most relevant 

features of the evolving solutions in an approximate manner. We 

assume, as it happens in the strong management regime, that 

the interacting pulses are well approximated by a Gaussian shape 

[23,24] and use the ansatz 

u l (Z, T ) = 

√ 
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where E l , p l (Z), C l (Z), ω l (Z), T l (Z), θ l (Z) are the energy, inverse 

pulse width, linear chirp, center frequency, center position and 

phase of the pulse, respectively. In order to address the interaction 

properties of intrachannel DM solitons in TDM transmission sys- 

tems, we consider a solution consisting of 2 interacting pulses u(Z, 

T) = u 1 (Z, T) + u 2 (Z, T) , resulting the system of equations for the 

evolution of the pulses 
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D(Z) defines the dispersion map and it is a periodic function 

of the propagation distance with alternating values D + and D − in 

sections of fiber with lengths Z + and Z −. �D = D + − |D −| is the 

dispersion difference and Z 0 = Z + + Z − is the map period. 

In our mathematical model, we neglect the phase-dependent 

terms. That is, we are considering an incoherent model where the 

interaction effects are dictated by cross-phase modulation (XPM) 

and self-phase modulation terms (SPM) in what is called the 

strong management regime ( Z 0 �D > 10, Z 0 �D < 45). As trans- 

mission bit rates move to higher standards of the synchronous 

optical network (SONET) or the synchronous digital hierarchy 

(SDH), the impact of higher-order effects becomes increasingly 

important. For such cases, third-order dispersion (TOD) must be 

taken into account. In our results we assume a constant value for 

the TOD parameter δ = sign (d 3 β/d ω 

3 )/6 that models the effect of 

TOD stemming from the term d 3 β/d ω 

3 , where β( ω) is the mode 

propagation constant at frequency ω. TOD induces three main 

effects in DM soliton propagation: a displacement of the pulse 

position, an asymmetric distortion in the shape of the pulse and 

energy radiation. We have neglected the two latter effects in the 

variational approximation. This restricts its validity to small values 

of δ. It may seem a limitation of the proposed variational model 

but, on the other hand, this condition defines a regime of practical 

interest for a transmission system where TOD-induced radiation 

loss has to be kept to a very small value. It has been previously 

reported [25] that these effects induced by TOD are negligible for 

typical system parameters. 

Substituting the ansatz ( 1 ) in the Lagrangian density from 

which ( 2 ) is obtained and integrating in the transverse coordinate 

T permits to obtain the Lagrangian for the reduced dynamical 

system. Finally, taking the variation with respect to each of the 

pulse parameters p l , C l , ω l , T l , we obtain the equations of motion 
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