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a b s t r a c t 

A time fractional quantum framework has been introduced into quantum mechanics. A new version of 

the space-time fractional Schrödinger equation has been launched. The introduced space-time fractional 

Schrödinger equation has a new scale parameter, which is a time fractional generalization of Planck’s 

constant in quantum physics. 

It has been shown that the presence of a fractional time derivative in the space-time fractional 

Schrödinger equation significantly impacts quantum mechanical fundamentals. 

Time fractional quantum mechanical operators of coordinate, momentum and angular momentum were 

defined and their commutation relationships were established. The pseudo-Hamilton operator was intro- 

duced and its Hermicity has been proven. 

Two new functions related to the Mittag-Leffler function have been introduced to solve the space-time 

fractional Schrödinger equation. Energy of a time fractional quantum system has been defined and cal- 

culated in terms of the newly introduced functions. It has been found that in the framework of time 

fractional quantum mechanics there are no stationary states, and the eigenvalues of the pseudo-Hamilton 

operator are not the energy levels of the time fractional quantum system. 

A free particle solution to the space-time fractional Schrödinger equation was found. A free particle 

space-time fractional quantum mechanical kernel has been found and expressed in terms of the H - 

function. Renormalization properties of a free particle solution and the space-time fractional quantum 

kernel were established. 

Some particular cases of time fractional quantum mechanics have been analyzed and discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years the application of fractional calculus in quan- 

tum theory became a rapidly growing area. It was initiated by the 

discovery of fractional quantum mechanics (QM) [1–4] . The cru- 

cial manifestation of fractional QM is fractional Schrödinger equa- 

tion . The fractional Schrödinger equation includes a spatial deriva- 

tive of fractional order instead of the second order spatial deriva- 

tive in the well-known Schrödinger equation. Thus, only the spatial 

derivative becomes fractional in the fractional Schrödinger equa- 

tion, while the time derivative is the first order time derivative. 

Due to the presence of the first order time derivative in the frac- 

tional Schrödinger equation, fractional QM supports all QM funda- 

mentals. 

In [1,2] the path integral over Lévy-like quantum flights has 

been introduced, and the fractional Schrödinger equation was de- 

rived from the path integral over the Levy flights. The consid- 
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eration presented in [2,4] is similar to the celebrated Feynman’s 

derivation [5] of the well-know Schrödinger equation from the 

path integral over Brownian-like quantum paths. 

To our best knowledge, the first attempt to elaborate on the 

quantum analogue of the Lévy flights probability distribution was 

the paper by Montroll [6] . Using the fact that a free particle quan- 

tum kernel satisfies the semi group property expressed by the 

chain equation, Montroll searched for a solution to the chain equa- 

tion in the most general functional form. The solution obtained by 

Montroll is the quantum analogue of the Lévy distribution . A sequel 

to Montroll’s paper was implemented by West in his seminal pa- 

per [7] , where the fractional differential equation of motion for a 

free particle quantum Lévy kernel was found. 

Inspired by the work of Laskin [1,2] , Naber invented time frac- 

tional Schrödinger equation [8] . The time fractional Schrödinger 

equation involves the time derivative of fractional order instead 

of the first-order time derivative, while the spatial derivative is 

the second-order spatial derivative as it is in the well-known 

Schrödinger equation. To obtain the time fractional Schrödinger 

http://dx.doi.org/10.1016/j.chaos.2017.04.010 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.chaos.2017.04.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2017.04.010&domain=pdf
mailto:nlaskin@rocketmail.com
http://dx.doi.org/10.1016/j.chaos.2017.04.010


N. Laskin / Chaos, Solitons and Fractals 102 (2017) 16–28 17 

equation, Naber mapped the time fractional diffusion equation 

into the time fractional Schrödinger equation, similarly to the 

map between the well-known diffusion equation and the stan- 

dard Schrödinger equation. The mapping implemented by Naber 

can be considered as a “fractional” generalization of the Wick ro- 

tation [9] . To get the time fractional Schrödinger equation, Naber 

implemented the Wick rotation in complex t -plane by rising 

the imaginary unit i to the same fractional power as the frac- 

tional order of the time derivative in the time fractional diffu- 

sion equation. The time fractional derivative in the time fractional 

Schrödinger equation is the Caputo fractional derivative [10] . Naber 

has found the exact solutions to the time fractional Schrödinger 

equation for a free particle and for a particle in a potential 

well [8] . 

Later on, Wang and Xu [11] , and then Dong and Xu [12] , 

combined both Laskin’s equation and Naber’s equation and came 

up with space-time fractional Schrödinger equation . The space-time 

fractional Schrödinger equation includes both spatial and temporal 

fractional derivatives. Wang and Xu found exact solutions to the 

space-time fractional Schrödinger equation for a free particle and 

for an infinite square potential well. Dong and Xu found the ex- 

act solution to the space-time fractional Schrödinger equation for 

a quantum particle in δ-potential well. 

Here we introduce time fractional QM and develop its funda- 

mentals. The wording “time fractional quantum mechanics ” means 

that the time derivative in the fundamental quantum mechani- 

cal equations – Schrödinger equation and fractional Schrödinger 

equation, is substituted with a fractional time derivative. The 

time fractional derivative in our approach is the Caputo fractional 

derivative. 

To introduce and develop time fractional QM we begin with our 

own version of the space-time fractional Schrödinger equation. Our 

space-time fractional Schrödinger equation involves two scale di- 

mensional parameters, one of which can be considered as a time 

fractional generalization of the famous Planck’s constant, while the 

other one can be interpreted as a time fractional generalization 

of the scale parameter emerging in fractional QM [1–4] . The time 

fractional generalization of Planck’s constant is a fundamental di- 

mensional parameter of time fractional QM, while the time frac- 

tional generalization of Laskin’s scale parameter [1–4] plays a fun- 

damental role in both time fractional QM and time fractional clas- 

sical mechanics. 

In addition to the above mentioned dimensional parameters, 

time fractional quantum mechanics involves two dimensionless 

fractality parameters α, 1 < α ≤ 2 and β , 0 < β ≤ 1. Parameter 

α is the order of the spatial fractional quantum Riesz derivative 

[1] and β is the order of the time fractional derivative. In other 

words, α is responsible for modeling spatial fractality , while pa- 

rameter β , which is the order of Caputo fractional derivative [10] , 

is responsible for modeling temporal fractality . 

Time fractional quantum mechanical operators of coordinate, 

momentum and angular momentum have been introduced and 

their commutation relationship has been established. The pseudo- 

Hamilton quantum mechanical operator has been introduced and 

its Hermiticity has been proven. The general solution to the space- 

time fractional Schrödinger equation was found in the case when 

the pseudo-Hamilton operator does not depend on time. Energy 

of a quantum system in the framework of time fractional QM 

was defined and calculated in terms of the Mittag-Leffler func- 

tion. Two new functions associated with the Mittag-Leffler func- 

tion have been launched and elaborated. These two new functions 

can be considered as a natural fractional generalization of the well- 

known trigonometric functions sine and cosine. A fractional gener- 

alization of the celebrated Euler equation was discovered. A free 

particle time fractional quantum kernel was calculated in terms of 

Fox’s H -functions. 

In the framework of time fractional QM at particular choices 

of fractality parameters α and β , we rediscovered the following 

fundamental quantum equations: 

1. Schrödinger equation (Schrödinger equation [13] ), α = 2 and 

β = 1 ; 

2. Fractional Schrödinger equation (Laskin equation [4] ), 1 < α ≤
2 and β = 1 ; 

3. Time fractional Schrödinger equation (Naber equation [8] ), α = 

2 and 0 < β ≤ 1; 

4. Space-time fractional Schrödinger equation (Wang and Xu 

[11] and Dong and Xu [12] equation), 1 < α ≤ 2 and 0 < β
≤ 1. 

1.1. Shortcomings of time fractional QM 

While fractional QM [1–4] supports all QM fundamentals, time 

fractional QM violates the following fundamental quantum physics 

laws: 

a. Quantum superposition law; 

b. Unitarity of evolution operator; 

c. Probability conservation law; 

d. Existence of stationary energy levels of quantum system. 

Time fractional quantum dynamics is governed by a pseudo- 

Hamilton operator instead of the Hamilton operator in standard 

QM and fractional QM. Eigenvalues of quantum pseudo-Hamilton 

operator are not the energy levels of a time fractional quantum 

system. 

1.2. Benefits of time fractional QM 

Despite of the above listed shortcomings, the developments in 

time fractional QM can be considered a newly emerged and at- 

tractive application of fractional calculus to quantum theory. Time 

fractional QM helps to understand the significance and importance 

of the fundamentals of QM such as Hamilton operator, unitarity of 

evolution operator, existence of stationary energy levels of quan- 

tum mechanical system, quantum superposition law, conservation 

of quantum probability, etc. 

Besides, time fractional QM invokes new mathematical tools, 

which have never been used in quantum theory before. 

From a stand point of QM the time fractional QM is an ade- 

quate, convenient mathematical framework well adjusted to study 

dissipative quantum systems interacting with environment [14–17] . 

1.3. The paper outline 

The introduction presents a brief overview of benefits and 

shortcomings of time fractional QM. 

In Section 2 , we launched a new version of the space-time frac- 

tional Schrödinger equation. Our space-time fractional Schrödinger 

equation involves two scale dimensional parameters, one of which 

can be considered as a time fractional generalization of the fa- 

mous Planck’s constant, while the other one can be interpreted 

as a time fractional generalization of the scale parameter emerg- 

ing in fractional QM. A 3D generalization of the space-time frac- 

tional Schrödinger equation has been developed. We also found 

the space-time fractional Schrödinger equation in momentum rep- 

resentation. The pseudo-Hamilton operator was introduced and its 

Hermiticity has been proven. The parity conservation law has been 

proven in the framework of time fractional QM. 

In Section 3, the solution to the space-time fractional 

Schrödinger equation was obtained in the case when the pseudo- 

Hamilton operator does not depend on time. It was found that 

time fractional QM does not support a fundamental property of 

QM–conservation of quantum mechanical probability. 
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