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a b s t r a c t 

We consider the following fractional stochastic partial differential equation on a bounded, open subset B 

of R 

d for d ≥ 1 

∂ t u t (x ) = L u t (x ) + ξσ (u t (x )) ̇ F (t, x ) , 

where ξ is a positive parameter and σ is a globally Lipschitz continuous function. The stochastic forcing 

term 

˙ F (t, x ) is white in time but possibly colored in space. The operator L is fractional Laplacian which 

is the infinitesimal generator of a symmetric α-stable Lévy process in R 

d . We study the behaviour of the 

solution with respect to the parameter ξ . 

We show that under zero exterior boundary conditions, in the long run, the p th-moment of the solution 

grows exponentially fast for large values of ξ . However when ξ is very small we observe eventually an 

exponential decay of the p th-moment of this same solution. 

Published by Elsevier Ltd. 

1. Introduction and main results 

Stochastic Partial Differential Equations (SPDEs) have been used 

recently in many disciplines ranging from applied mathematics, 

statistical mechanics and theoretical physics to theoretical neuro- 

science, theory of complex chemical reactions (including polymer 

science), fluid dynamics and mathematical finance to quote only a 

few; see for example [9] and references therein. 

In [8] , the authors considered the following stochastic heat 

equation, 

∂ t u t (x ) = L u t (x ) + ξσ (u t (x )) ̇ F (t, x ) , (1.1) 

where L = � is the Dirichlet Laplacian on B R (0), the ball of ra- 

dius R centered at the origin. Under some appropriate conditions, 

it was shown that the long time behaviour of the solution is de- 

pendent on the noise level , that is on the values of ξ . More pre- 

cisely, it was shown that for large values of ξ , the moments of the 

solution grow exponentially with time while for small values of ξ , 

the moments decay exponentially. In this paper, we extend the re- 

sults of Foondun and Nualart [8] and Xie [11] by taking L to be 

a non-local operator, the generator of a killed stable Lévy process, 

namely L := −ν(−�) α/ 2 for 0 < α ≤ 2 with zero exterior bound- 

ary conditions. The main results in this paper are Theorems 1.3 and 
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1.6 below. The fractional Laplacian is the infinitesimal generator of 

a symmetric α-stable Lévy process in R 

d and can be written in the 

form 

−(−�) 
α
2 u (x ) = c lim 

ε↓ 0 

∫ 
{ y ∈ R d : | y −x | >ε} 

(u (y ) − u (x )) 
dy 

| y − x | d+ α , 

for some constant c = c(α, d) . We also provide some clarification 

and simplification of the proofs in [8] . The difficulty in our paper 

lies in the fact that we need new estimates for the non-local op- 

erators. One cannot readily use analogous estimates for the Lapla- 

cian. 

Non-local operators are becoming increasingly important due to 

their wide applicability for modeling purposes. The class of equa- 

tions we study can for instance be used to model particles moving 

in a discontinuous fashion while being subject to some branching 

mechanism; see, for example, Walsh [10] . 

Throughout this paper, the initial condition u 0 is always as- 

sumed to be a non-negative bounded deterministic function such 

that for some set K ⊂ B R (0), the quantity 

∫ 
K 

u 0 (x ) dx 

is strictly positive. The function σ will be subjected to the follow- 

ing condition. 
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Assumption 1.1. The function σ is assumed to be a globally Lips- 

chitz function satisfying 

l σ | x | ≤ | σ (x ) | ≤ L σ | x | for all x ∈ R , 

for some positive constants l σ and L σ . 

Following Walsh [10] , we look at the mild solution of (1.1) sat- 

isfying the following integral equation, 

u t (x ) = (G B u 0 ) t (x ) + ξ

∫ 
B R (0) 

∫ t 

0 

p B (t − s, x, y ) σ (u s (y )) F (ds , dy) , 

(1.2) 

where 

(G B u 0 ) t (x ) = 

∫ 
B R (0) 

u 0 (y ) p B (t, x, y )dy , 

and p B ( t , x , y ) denotes the heat kernel of the stable Lévy process. 

It is the transition density of the stable Lévy process killed in the 

exterior of B = B R (0) . More information about this kernel can be 

found in Section 2 . When the driving noise is white in space and 

time, existence-uniqueness considerations impose the conditions 

that d = 1 and 1 < α < 2. When the noise term is not space-time 

white noise, it will be spatially correlated that is, 

E ̇

 F (s, x ) ̇ F (t, y ) = δ0 (t − s ) f (x, y ) , 

where the correlation function f satisfies the inequality f (x, y ) ≤
˜ f (x − y ) , and 

˜ f is a locally integrable positive continuous function 

on R 

d \{ 0 } satisfying the following Dalang type condition, 

∫ 
R d 

ˆ ˜ f (ξ ) 

1 + | ξ | α d ξ < ∞ , (1.3) 

where ˆ ˜ f denotes the Fourier transform of ˜ f ; see [4] . We will im- 

pose the following non-degeneracy condition on f , 

Assumption 1.2. There exists a constant K R such that 

inf 
x,y ∈ B R (0) 

f (x, y ) ≥ K R . 

The above conditions on the correlation function are quite mild. 

Examples of correlation functions satisfying Assumption 1.2 in- 

clude the Riesz kernel, Cauchy kernels and many more: See, for 

example, [6] and [7] . 

Our first main result concerns Eq. (1.1) when the driving noise 

is space-time white noise which we denote by ˙ W . In other words, 

we are looking at {
∂ t u t (x ) = L u t (x ) + ξσ (u t (x )) ˙ W (t, x ) , x ∈ B R (0) , t > 0 

u t (x ) = 0 , x ∈ B R (0) c . 

(1.4) 

Eq. (1.4) has a unique mild solution given in Eq. (1.2) with W re- 

placed with F when σ is Lipschitz, d = 1 and 1 < α < 2. See 

[9,10] for more details on this. 

Theorem 1.3. Let u t ( x ) be the unique mild solution of Eq. (1.4) , then 

there exists ξ 0 > 0 such that for all ξ < ξ 0 and x ∈ B R (0), 

−∞ < lim sup 

t→∞ 

1 

t 
log E | u t (x ) | 2 < 0 . 

Fix ε > 0, then there exists ξ 1 > 0 such that for all ξ > ξ 1 and 

x ∈ B R −ε (0) , 

0 < lim inf 
t→∞ 

1 

t 
log E | u t (x ) | 2 < ∞ . 

Remark 1.4. It is not hard to see that ξ 0 ≤ ξ 1 . Otherwise there 

will be an obvious contradiction in Theroem 1.3 . We also give some 

estimates of ξ 0 and ξ 1 in Remark 3.1 . 

As in [8] , we define the energy of the solution by the following 

quantity, 

E t (ξ ) = 

√ 

E ‖ u t ‖ 

2 
L 2 (B R (0)) . (1.5) 

The next corollary now follows easily from the above theorem. 

Corollary 1.5. With ξ 0 and ξ 1 as in Theorem 1.3 , we have 

−∞ < lim sup 

t→∞ 

1 

t 
log E t (ξ ) < 0 for all ξ < ξ0 

and 

0 < lim inf 
t→∞ 

1 

t 
log E t (ξ ) < ∞ for all ξ > ξ1 . 

Our next set of results concerns Eq. (1.1) with colored noise sat- 

isfying the conditions above. That is, we consider {
∂ t u t (x ) = L u t (x ) + ξσ (u t (x )) ̇ F (t, x ) , x ∈ B R (0) , t > 0 

u t (x ) = 0 , x ∈ B R (0) c . 

(1.6) 

Eq. (1.6) has a unique mild solution given by (1.2) when σ is Lips- 

chitz and the spatial correlation function f satisfies the Dalang type 

condition in Eq. (1.3) . See [6] for more details on this. Our second 

main result in this paper is the following theorem. 

Theorem 1.6. Assume that u t is the unique mild solution to Eq. (1.6) . 

Then there exists ξ 2 > 0 such that for all ξ < ξ 2 and x ∈ B R (0) 

−∞ < lim sup 

t→∞ 

1 

t 
log E | u t (x ) | 2 < 0 . 

Fix ε > 0, then there exists ξ 3 > 0 such that for all ξ > ξ 3 and 

x ∈ B R −ε (0) , 

0 < lim inf 
t→∞ 

1 

t 
log E | u t (x ) | 2 < ∞ . 

Remark 1.7. It is not hard to see that ξ 2 ≤ ξ 3 . Otherwise there 

will be an obvious contradiction in Theroem 1.6 . We can also give 

some estimates of ξ 2 and ξ 3 from the proof of Theorem 1.6 similar 

to the estimates in Remark 3.1 . 

We then have the following easy consequence. 

Corollary 1.8. Let ξ 2 and ξ 3 be as in Theorem 1.6 , then 

−∞ < lim sup 

t→∞ 

1 

t 
log E t (ξ ) < 0 for all ξ < ξ2 , 

and 

0 < lim inf 
t→∞ 

1 

t 
log E t (ξ ) < ∞ for all ξ > ξ3 . 

We end this introduction with a plan of the article. In Section 2 , 

we provide some estimates needed for the proofs of our main re- 

sults. The proofs of our main Theorems are presented in Section 3 . 

We then obtain extensions of the main results to higher moments 

in Section 4 . Finally Section 5 contains some extensions of our 

main results to some other non-local operators instead of the frac- 

tional Laplacian. Throughout this paper, the letter c with or with- 

out subscript(s) will denote a constant whose value is not impor- 

tant and can vary from place to place. 

2. Some estimates 

We begin this section with some estimates on heat kernel 

of the Dirichlet fractional Laplacian in the ball B := B R (0). For 

more information on these, see Theorem 1.1 in [2] and references 

therein. 
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