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In a seminal paper, Grigorenko and Grigorenko [15], numerically studied fractional order dynamical sys-
tems (FODS) of the form D%x; = f;(x1,X2,%3), 0 <a; <1,(i=1,2,3); and showed the existence of chaos
in case of fractional Lorenz system when ¥ = o + o + a3 < 3. Since then voluminous numerical work
has been done to explore various FODS, in this regard. It is now an established fact that X acts as a chaos

In the present article we take a survey of present literature on chaotic behavior of fractional order dy-
namical systems. Further we numerically explore fractional Chen, Rossler, Bhalekar-Gejji, Lorenz and Liu
systems and observe that chaos always disappear if ¥ < 2. The existing examples in the literature along

Chaos with the systems that we have analyzed lead us to conjecture non-existence of chaos if ¥ < 2; which in

Poincaré-Bendixon theorem

some sense is a generalization of classical Poincaré-Bendixon theorem for FODS.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional order dynamical systems (FODS) have received at-
tention after seminal work of Grigorenko and Grigorenko [15] in
which they showed existence of chaos in fractional order Lorenz
system. Since then various FODS have been investigated and crit-
ical value for the chaos to disappear (X.) has been calculated in
each case.

Integer order Lorenz system was introduced by Lorenz in 1963
[21] in connection with hydrodynamics which he proved to be
chaotic. Since then there are many other systems based on hydro-
dynamical models which have been shown to be chaotic [4,37,38].
Integer order chaotic Liu system was introduced by Liu et al.
[20] in 2004. They showed that Liu system has complex dynam-
ics which is different from dynamics of Lorenz system. Further Liu
et al. realized this system with an electronic circuit. Rdssler [27] in-
troduced a chaotic system, which was simpler than the Lorenz
system and has only one lobe. This system later found a num-
ber of applications in synchronization, cryptography and biology.
Bhalekar and Daftardar-Gejji introduced a topologically inequiva-
lent new system in 2011 [2] and proved existence of chaos in the
same. The fractional version of this system is analyzed by Desh-
pande et al. recently [12].
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In the present paper we take a survey of literature which deals
with fractional versions of various systems and their chaotic be-
havior. We then explore the fractional version of Bhalekar-Gejji
(BG) system, Lorenz system, Liu system, Chen system and Rdssler
system as a characteristic representatives of the set of all fractional
order autonomous dynamical systems. We note that in each case
when ¥ < 2, chaos always disappears, which leads us to conjec-
ture that chaos cannot exist if ¥ < 2 for fractional dynamical sys-
tems.

Rest of the article is organized as follows. Section 2 defines pre-
liminaries and notations used in the paper. Section 3 takes a sur-
vey of various fractional dynamical systems and their critical val-
ues below which chaos disappears. Section 4 describes details of
the numerical method used for numerical simulations in this arti-
cle. Section 5 presents numerical simulations and phase portraits
for various systems. In Section 6 we conduct the stability analysis
of the fractional systems. Section 7 lists the conclusions.

2. Preliminaries and notations

In this section, we introduce notations, definitions [19,24,26].

Definition 1 [26]. The Riemann-Liouville fractional integral of or-
der o > 0 of f e (V is defined as

t

apey L f(@)

() = F(a)/(t_r)]_adr. 1)
0
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Definition 2 [26]. The Riemann-Liouville derivative of order o e
[k—1,k), ke N of fe Cis defined as

reDYf(t) = DMK f(t)

k t
= ﬁ %/0 (t - 7)1 f(r) d.

Definition 3 [26]. The Caputo derivative of order o < (k—
1,k], ke N of f e C is defined as

Daf(t) — Ik—o(f(k) (t)
1 t
= Th—o fo (t - r)k—a—lf(k)(-[) dr, ae(k—1,k),
(3)

(2)

DYf(t) = FO (L), o =k. (4)

In this article we deal with Caputo derivative of order «,0 <
a <1

Definition 4 [19]. Let o = (1,3, 3), 0 <; <1, (i=1,2,3). For
x(t) eR3 and f=(f1.f2. f3). fieC', (i=1,2,3), fractional dy-
namical system is defined as

D¥x(t) = f(x(t)), x(0) =Xxo, where D* = (D*',D%,D*). (5)

If o1 = oy = v3 then the system (5) is called as commensurate
system and incommensurate system otherwise [31]. For oy =y =
o3 = 1, the system (5) reduces to integer order dynamical system.

Let ¥ denote the sum of all fractional orders of (5) ie. ¥ =
o1 + 0y + 3.

Definition 5. The critical value (X.) is defined as the largest value
of 3, such that for the ¥ < X, the system of (5) is not chaotic.

Definition 6. The point x* = (x},%3,%3) € R3 is called as equilib-
rium point of the system (5), if f(x*) =0.

2.1. Stability analysis of the commensurate fractional systems

Consider the system (5), with a; = oy = a3 € (0, 1].

The equilibrium point is called as hyperbolic equilibrium point
if |arg(A)| # &%, for any eigenvalue A of the matrix J = Df(x*)
[23]. Assume x* is an equilibrium point of the system (5). Let
& =x—x* eR3, then [19]

D¥E = D*(x — x*)

= D*x
= f(E +x7)
=fx") +Df(x)E + -
Thus we get,
D*§ =J§, a= (o, 00,03), oy =0p =03 € (0,1]. (6)

The eigenvalues of the matrix J determine the stability proper-
ties of the system about the equilibrium point x* [19]. The stabil-
ity criteria is due to Matignon [23] which states: If x* is a hyper-
bolic equilibrium point then the trajectories of the system (6) are
asymptotically stable if and only if |arg(A)| > %E, for every eigen-
value A of J.

2.2. Stability analysis of the incommensurate fractional order systems

. . v;
Consider the system (5), with ai:u—l, v, up) =1, uve

1
N, i=1,2,3, and ¢; € (0, 1). Define M = LCM (v, 15, V3). Let x* de-
note an equilibrium point of the system (5), and & = x — x*. Using
the similar analysis as in previous subsection,

D""Ei%51%ﬁ(x*)+§z%ﬂ()¢*)+§3aix3fi(><*), 1<i<3 (7)

is equivalent to
D*¢ =J&, a=(u1,a7,a3), ;e (0,1], i=1,2,3. (8)

where | denotes the Jacobian matrix evaluated at x*.

Define A(A) = diag([AMx1 AMez jMes]y _ .

Then the solution of the linear system (8) is asymptotically sta-
ble, if all the roots of the equation A(A) = 0, satisfy the condition
[11,31]

b4
2M

Thus the equilibrium point x* is stable, if the condition (9) is
satisfied. The t; —min (|arg(};)|) is defined as the instability
measure of the fractional order systems (IMFOS). Tavazoei et al.
[31] show that the necessary condition for a fractional incommen-
surate system to be chaotic is

IMFOS > 0. (10)

It should be noted that the condition (10) is not sufficient for con-
cluding existence of chaos [31].

min (| arg(2)]) < 0. (9)

3. Survey of fractional dynamical systems and chaos

In this section we take a detailed survey of the research articles
which analyze various fractional systems for chaotic behavior and
their critical values.

Grigorenko and Grigorenko [15] in their seminal article ex-
plored fractional order Lorenz system and found that the critical
value for chaos to disappear X = 2.91 [15]. Fractional version of
Chua system was simulated by Hartley et al. and they found X
to be 2.7 for this system [16]. Ahmad and Sprott analyzed frac-
tional version of ‘jerk’ model over wide set of parameter values.
From this analysis they found the critical value to be 2.1 for this
system [1]. Fractional version of Réssler system was analyzed by Li
and Chen and X for this system is shown to be 2.4 [17]. Some of
the systems such as fractional Arneodo system [22], fractional Lii
system [10], fractional Chen system [18] were analyzed for chaos
by using frequency domain approximation method. Some of these
systems were reported to show chaotic behavior for very low or-
ders of fractional derivatives. However frequency domain approx-
imation method was proven to be unreliable and the X values
found in these articles were shown to be incorrect by Tavazoei
and Haeri [32]. Further Tavazoei and Haeri showed X, = 2.43 for
fractional Lii system while ¥ = 2.4 for fractional Chen system in
the same article. Fractional Liu system was explored for chaos by
Wang and Wang [34] and critical value for chaos to disappear was
found to be 2.544 [34]. A “new system” was proposed and ana-
lyzed for chaos by Sheu et al. and ¥ was found to be 2.43 [28].
Sheu et al. also numerically explored Newton-Leipnik system and
found X = 2.82 [29]. Fractional version of Financial system was
explored by Chen for chaos and ¥ was found to be 2.55 for com-
mensurate case and 2.35 for incommensurate system [6]. A Uni-
fied system was analyzed by Wu et al. and X, was shown to be
2.76 [36]. A new Liu system was investigated by Daftardar-Gejji
and Bhalekar [7] and ¥ was shown to be 2.76 for commensu-
rate while 2.60 for incommensurate case [7]. A fractional version
of simplified Lorenz system proposed by Sun et al. was analyzed
for bifurcations and chaos by Sun and Sprott [30]. They found that
minimum value of fractional order for which chaos disappears as
2.62. Fractional version of Volta’s system was shown to be chaotic
by Petras and X was shown to be 2.9 [25]. Fractional Genesio-Tesi
system was analyzed by Faieghi et al. and they found X value to
be 2.79 [14]. Fractional version of Bloch equation was put to simu-
lation and shown to be transiently chaotic below certain values of
fractional order by Bhalekar et al. [3]. They found that X, =2.97
for this system [3]. The fractional version of Bhalekar-Gejji sys-
tem was analyzed for bifurcations and chaotic behavior over wide
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