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a b s t r a c t 

In this paper, a family of the multidimensional time- and space-fractional diffusion-wave equations with 

the Caputo time-fractional derivative of the order β , 0 < β � 2 and the fractional Laplacian (−�) 
α
2 

with 1 < α � 2 is considered. A representation of the first fundamental solution to this equation is 

deduced in form of a Mellin–Barnes integral by employing the technique of the Mellin integral transform. 

The Mellin–Barnes representation is used to derive some new identities for the fundamental solutions in 

different dimensions and to identify already known and some new particular cases of the fundamental 

solution that have especially simple closed form. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The partial differential equations of fractional order are nowa- 

days a topic under very intensive development. The spectrum of 

papers devoted to this theme is mainly threefold: fractional par- 

tial differential equations as models for real processes and systems, 

analysis of physical and probabilistic properties of their solutions, 

and, finally, mathematical and numerical analysis of these equa- 

tions and their solutions. This paper falls into the third category of 

papers mentioned above, so that we are not going to discuss any 

applications of the equations we deal with (even if we are aware 

of some applications and recognize their importance, see e.g [27] ., 

[28] ). 

In its turn, the variety of publications devoted to mathematical 

analysis of the fractional partial differential equations is immense, 

too. It can be explained among other things by the fact, that in- 

stead of a unique notion of a derivative of integer order, there are 
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many different definitions of the fractional derivatives (in the sense 

of Riemann–Liouville, Weyl, Caputo, Riesz, Riesz–Feller, Grünwald–

Letnikov, etc.) and differential equations with all these derivatives 

can be considered (at least from the mathematical viewpoint). Fur- 

thermore, initial and boundary conditions for the fractional par- 

tial differential equations can be posed both in local and non-local 

forms (say, in terms of the fractional derivatives and integrals) that 

enlarge the quantity of potentially interesting problems even more. 

Most of papers devoted to different aspects of the fractional 

partial differential equations deal with the spatial one-dimensional 

problems. The literature dedicated to the multidimensional frac- 

tional partial differential equations is still very restricted and 

mostly treats the time-fractional partial differential equations. The 

fundamental solution to the Cauchy problem for the multidimen- 

sional time-fractional diffusion equation with the time-fractional 

derivative of the order α, 0 < α � 2 and the Laplace operator 

was derived independently in [13] and [31] in terms of the Fox 

H -function. Moreover, uniqueness and existence of solutions to 

the Cauchy problem with initial conditions from appropriate func- 

tional spaces were investigated in [13] , too. In [4] these results 

were extended to the class of the multidimensional time-fractional 
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diffusion equations with a uniformly elliptic operator with vari- 

able coefficients acting in the spatial variables and with the time- 

fractional derivative of the order α, 0 < α < 1 and in [14] these 

equations with the time-fractional derivative of order α, 1 < α < 

2 were investigated. In [12] , the Green function and propagators 

for the multidimensional time-fractional diffusion-wave equation 

were derived in integral form. Based on the integral representa- 

tions of the solutions, their physical properties were discussed in 

this paper, too. A representation of the fundamental solution to the 

multidimensional time-fractional diffusion equation was derived in 

[27] in terms of the multidimensional Gaussian density function. 

In the very recent paper [7] , a representation of the fundamen- 

tal solution to the multidimensional time-fractional diffusion-wave 

equation in terms of the Fox H -function was rediscovered. This 

representation was employed for derivation of the series represen- 

tations of the fundamental solution and for calculation of its frac- 

tional moments. 

Recently, a series of papers regarding the multidimensional 

time-fractional diffusion-wave equation on bounded spatial do- 

mains was published. In [17] , some uniqueness and existence re- 

sults for the solutions of the initial-boundary-value problems for 

the generalized time-fractional diffusion equation with the Caputo 

fractional derivative were given. To establish uniqueness of solu- 

tion, a maximum principle for the generalized time-fractional dif- 

fusion equation proved in [16] was employed. In [18] the case of 

the initial-boundary-value problems for the generalized multi-term 

time-fractional diffusion equation with the Caputo derivative was 

considered. Let us also mention the papers [1] and [2] devoted 

to the initial-boundary-value problems for the time-fractional dif- 

fusion equation with the Riemann–Liouville fractional derivative 

and the paper [24] , where the initial-boundary-value problems for 

a general time-fractional diffusion equation which generalizes the 

single- and the multi-term time-fractional diffusion equations as 

well as the time-fractional diffusion equation of the distributed or- 

der were considered. 

The literature devoted to the multidimensional space- and 

time-space-fractional partial differential equations is even more re- 

stricted. Especially worth to mention are the papers [10] and [11] , 

where the Green functions and propagators for the multidimen- 

sional space and space-time-fractional diffusion equations were 

derived in integral form and investigated from the physical view- 

point. In [20] , a multi-dimensional fractional wave equation that 

contains the time- and space-fractional derivatives of the same 

order α, 1 � α � 2 was introduced and investigated. In particu- 

lar, some new integral representations of its fundamental solution 

were deduced and employed for derivation of its mathematical and 

physical properties. In the one- and three-dimensional cases, the 

fundamental solution to the fractional wave equation has a nice 

closed form in terms of some elementary functions. In [22] , the 

case of the two-dimensional space- and time-fractional diffusion 

equation that contains the Caputo time-fractional derivative of or- 

der α/2 and the fractional Laplacian (−�) 
α
2 with 0 < α < 2 was 

considered. The fundamental solution to this equation was shown 

to be a two-dimensional probability density function that can be 

expressed in explicit form in terms of the Mittag–Leffler function. 

Otherwise, the form of the fundamental solution to the one- and 

three-dimensional space- and time-fractional diffusion equation is 

complicated and cannot be expressed in form of some elementary 

and known classical special functions (see [3] ). It is worth men- 

tioning that in the papers [11] , [12] , and [31] , an interpretation of 

the fundamental solutions to the fractional diffusion equations as 

a probability density function was given for the orders of the time- 

fractional derivative less than or equal to one. In this paper, the or- 

der of the fractional derivative is supposed to be from the interval 

(0, 2), but we do not treat the conditions for the non-negativity of 

the fundamental solution to the multidimensional diffusion-wave 

equation that remains an open problem. 

These results lead us to the following question that seems to 

be non-answered yet: How to determine all particular cases of the 

multidimensional space- and time-fractional diffusion-wave equa- 

tion with the Caputo time-fractional derivative of the order β and 

the fractional Laplacian (−�) 
α
2 that have a closed form in terms of 

the elementary and simple special functions. To answer this ques- 

tion, in this paper the technique of the Mellin integral transform 

(see [23] for applications of the Mellin integral transform in Frac- 

tional Calculus), the Mellin–Banes integral representations, and the 

properties of the Euler Gamma-functions are employed. This leads 

to a series of known and new particular cases of the fundamental 

solutions and to the formulas that connect the fundamental solu- 

tions for different dimensions. Let us note that a thorough analysis 

of the one-dimensional space- and time-fractional diffusion-wave 

equation has been done in [25] . 

The rest of the paper is organized as follows: In the second sec- 

tion, a problem formulation and some basic definitions are pre- 

sented. The third section is devoted to derivation of the Mellin–

Barnes integral representations of the fundamental solution to the 

multidimensional space- and time-fractional diffusion-wave equa- 

tion with the Caputo time-fractional derivative of the order β and 

the fractional Laplacian (−�) 
α
2 . In the fourth section, these repre- 

sentations are employed for derivation of some identities that con- 

nect the fundamental solutions for different dimensions and espe- 

cially simple closed form formulas for the fundamental solutions. 

Open questions for further research are listed in the last section. 

2. Problem formulation 

In this paper, we deal with the multidimensional space- and 

time-fractional diffusion-wave equation in the following form: 

D 

β
t u (x , t) = −(−�) 

α
2 u (x , t) , x ∈ R 

n , t > 0 , 

1 < α � 2 , 0 < β � 2 , (1) 

where (−�) 
α
2 is the fractional Laplacian and D 

β
t is the Ca- 

puto time-fractional derivative of the order β . The Caputo time- 

fractional derivative of order β > 0 is given by the formula 

D 

β
t u (x , t) = 

(
I 
n −β
t 

∂ n u 

∂t n 

)
(t) , n − 1 < β � n, n ∈ N , (2) 

where I 
γ
t is the Riemann–Liouville fractional integral that is de- 

fined by 

(I 
γ
t u )(t) = 

⎧ ⎨ 

⎩ 

1 

�(γ ) 

∫ t 

0 

(t − τ ) γ −1 u (x , τ ) dτ for γ > 0 , 

u (x , t ) for γ = 0 . 

For a sufficiently well-behaved function f : R 

n → R , the fractional 

Laplacian (−�) 
α
2 is defined as a pseudo-differential operator with 

the symbol | κ | α ( [29,30] ): (
F (−�) 

α
2 f 

)
(κ) = | κ| α(F f )(κ) , (3) 

where (F f )(κ) is the Fourier transform of a function f at the point 

κ ∈ R 

n defined by 

(F f )(κ) = 

ˆ f (κ) = 

∫ 
R n 

e iκ ·x f (x) dx . (4) 

For 0 < α < m, m ∈ N and x ∈ R 

n , the fractional Laplacian can be 

also represented as a hypersingular integral ( [30] ): 

(−�) 
α
2 f (x) = 

1 

d n,m 

(α) 

∫ 
R n 

(
�m 

h 
f 
)
(x) 

| h | n + α dh (5) 

with the suitably defined finite differences operator 
(
�m 

h 
f 
)
(x) and 

the normalization constant d n, m 

( α). The operator 
(
�m 

h 
f 
)
(x) can be 
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