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a b s t r a c t 

We discuss generalized integro-differential diffusion equations whose integral kernels are not of a simple 

power law form, and thus these equations themselves do not belong to the family of fractional diffusion 

equations exhibiting a monoscaling behavior. They instead generate a broad class of anomalous nonscal- 

ing patterns, which correspond either to crossovers between different power laws, or to a non-power-law 

behavior as exemplified by the logarithmic growth of the width of the distribution. We consider nor- 

mal and modified forms of these generalized diffusion equations and provide a brief discussion of three 

generic types of integral kernels for each form, namely, distributed order, truncated power law and trun- 

cated distributed order kernels. For each of the cases considered we prove the non-negativity of the so- 

lution of the corresponding generalized diffusion equation and calculate the mean squared displacement. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fractional differential equations and their generalizations have 

attracted much attention in the scientific community for the de- 

scription of anomalous diffusion and relaxation processes in com- 

plex environments [35] . The famed power-law dependence 〈 x 2 ( t ) 〉 
� t α of the mean squared displacement (MSD) on time can be cap- 

tured by fractional diffusion equations with fractional time and/or 

space derivatives instead of integer order ones. Depending on the 

anomalous diffusion exponent we distinguish subdiffusion for 0 < 

α < 1, normal diffusion for α = 1 , and superdiffusion for α > 1. 

The case with α = 2 corresponds to ballistic motion. Such devia- 

tions of the MSD from the linear time dependence are observed in 

different phenomena, such as subdiffusion of charge carrier motion 

in amorphous semiconductors [48] , anomalous diffusion in biologi- 

cal cells [34,36] , anomalous diffusion dynamics in the Earth surface 

and subsurface hydrology [47,50] , superdiffusion in weakly chaotic 

systems [56] , turbulence [39] , sound wave propagation in conduct- 

ing media [59] , as well as random search processes [24] , to name 

but a few. 
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The continuous time random walk (CTRW) model of Scher and 

Montroll [48] is one of the most popular stochastic models yielding 

anomalous diffusion for either a long-tailed waiting time probabil- 

ity distribution function (PDF) or a long-tailed jump length PDF. 

The corresponding time and space fractional diffusion equations 

can be obtained from the master equation of the CTRW in the dif- 

fusion limit [1,33,35,54,55] . 

In what follows we will be dealing with time fractional opera- 

tors, only. The time fractional diffusion equation can be either in 

normal form, that is, the fractional derivative in the Caputo sense 

stands on the left hand side in the equation, or in its equivalent 

modified form, where the fractional derivative in the Riemann–

Liouville sense stands on the right hand side of the equation. 

These two forms are equivalent and describe a monofractal or self 

affine process [53] . However, many natural systems do not exhibit 

a monoscaling behavior. As important examples of such nonscaling 

situations we can refer to truncated Lévy flights in the superdiffu- 

sive case [28] , and to Sinai-like superslow diffusion in the subdiffu- 

sive case [15] . The distributed order fractional diffusion equations 

suggested first in [7] allow one to go beyond the “simple” frac- 

tional kinetics. The distributed order derivative introduced origi- 

nally by Caputo for ordinary differential equations [3–5] is nothing 

else but a linear operator defined as a weighted sum of different 

fractional derivatives or an integral of such over their order. Dis- 

tributed order diffusion equations can be also represented in two 

http://dx.doi.org/10.1016/j.chaos.2017.05.001 

0960-0779/© 2017 Elsevier Ltd. All rights reserved. 

Please cite this article as: T. Sandev et al., Beyond monofractional kinetics, Chaos, Solitons and Fractals (2017), 

http://dx.doi.org/10.1016/j.chaos.2017.05.001 

http://dx.doi.org/10.1016/j.chaos.2017.05.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
mailto:trifce.sandev@drs.gov.mk
http://dx.doi.org/10.1016/j.chaos.2017.05.001
http://dx.doi.org/10.1016/j.chaos.2017.05.001


2 T. Sandev et al. / Chaos, Solitons and Fractals 0 0 0 (2017) 1–8 

ARTICLE IN PRESS 

JID: CHAOS [m5G; May 11, 2017;15:58 ] 

different forms, referred to as natural and modified forms, which 

are not equivalent [53] . The cases with different weighting func- 

tions, their physical meaning, the corresponding CTRW models and 

various techniques for finding the solutions have been discussed 

in a range of works [7–11,17,25–27,29,31,32,43] . We also note that 

such equations find more and more interest among mathemati- 

cians who proved rigorously several results obtained previously in 

physics literature, and developed the corresponding formalism [18–

20,61,62] . 

In the present paper we consider generalized integro- 

differential diffusion equations in normal and modified forms. 

In the natural form an integrodifferential operator acting on the 

temporal variable of the probability density function substitutes 

the first time derivative of the ordinary diffusion equation. The 

modified form of the equation inherits the first time derivative of 

the diffusion equation, but contains an additional operator acting 

on the temporal variable of the right hand side. We note that this 

last form is essentially a standard form of (the continuous limit 

of) the generalized master equation as appearing in the Nakajima–

Zwanzig formalism [40] . We demonstrate that the distributed or- 

der diffusion equations are their particular cases corresponding to 

certain forms of the integral kernels. We further consider another 

generic case of the kernels, namely, truncated power law and trun- 

cated double power law kernels, a particular case of the truncated 

distributed order kernel. For all these cases we prove the positivity 

of the solutions of the corresponding generalized diffusion equa- 

tions by employing the properties of completely monotone and 

Bernstein functions. Moreover, we calculate the MSD for all cases 

showing different nonscaling behavior. We note that generalized 

diffusion equations in normal form were introduced in [42] , and 

similar equations with memory kernels have been suggested 

in different contexts, such as fractional diffusion and generalized 

Langevin equations [60] , tempered diffusion processes [22,58] , gen- 

eralized Langevin equation with tempered memory kernel [23] , as 

well as in comb-like models for slow and ultraslow diffusion [44] . 

This paper is organized as follows. In Section 2 we consider 

generalized distributed order diffusion equations in the normal 

form, based on the three particular cases mentioned above. The 

generalized diffusion equation in the modified form, together with 

the corresponding particular cases is introduced in Section 3 . In 

Section 4 we briefly discuss the generalized wave equation. A sum- 

mary is provided in Section 5. For the convenience of the reader, 

in Appendix A we present a list of properties of the completely 

monotone and Bernstein functions. 

2. Generalized diffusion equations in normal form 

The generalized diffusion equation in the normal form contains 

the memory kernel on the left hand side [42] , 

∫ t 

0 

γ (t − t ′ ) ∂ 
∂t ′ W (x, t ′ ) dt ′ = 

∂ 2 

∂x 2 
W (x, t) , (1) 

where γ ( t ) is a non-negative and integrable function. In what 

follows we will formulate the restrictions on the memory ker- 

nel which ensure the non-negativity of the solution of Eq. (1) . 

Throughout the paper we put all dimensional constants equal to 1 

for brevity. The physical dimensions of the equations can be easily 

restored. Here and in what follows the initial condition is assumed 

to be of the form W 0 (x ) = δ(x ) without loss of generality. 

Note that the generalized diffusion Eq. (1 ) contains as special 

cases the standard diffusion equation if we take γ (t) = δ(t) , as 

well as the time fractional diffusion equation in the Caputo form 

for γ (t) = t −λ/ �(1 − λ) , 0 < λ < 1, i.e. 

C D 

λ
t W (x, t) = 

∂ 2 

∂x 2 
W (x, t) , (2) 

where C D 

λ
t is the Caputo fractional derivative of order λ [37] 

C D 

λ
t f (t) = 

1 

�(1 − λ) 

∫ t 

0 

( t − t ′ ) −λ d 

dt ′ f ( t 
′ ) dt ′ . (3) 

Returning to Eq. (1) and applying the Fourier- and Laplace- 

transforms 1 in succession one finds the solution in ( k, s )-space, 

W (k, s ) = 

ˆ γ (s ) 

s ̂  γ (s ) + k 2 
. (4) 

From here we conclude that the solution is normalized since 

[ W (k, s ) ] | k =0 = 

1 

s 
. (5) 

Throughout the paper we will use the subordination approach in 

order to verify positivity (non-negativity) of the solution of the 

generalized diffusion equations considered. From Eq. (4) we have 

W (k, s ) = γ (s ) 

∫ ∞ 

0 

e −u ( sγ (s )+ k 2 ) du = 

∫ ∞ 

0 

e −uk 2 G (u, s ) du, (6) 

where the function G is given by 

G (u, s ) = γ (s ) e −u sγ (s ) . (7) 

Thus, the PDF W ( x, t ) is given by Meerschaert et al. [29,30] 

W (x, t) = 

∫ ∞ 

0 

e −
x 2 

4 u √ 

4 πu 

G (u, t) du. (8) 

The function G ( u, t ) is the PDF providing the subordination trans- 

formation, from time scale t to time scale u . Indeed, at first we 

note that G ( u, t ) is normalized with respect to u for any t . From 

Eq. (7) we find ∫ ∞ 

0 

G (u, t) du = L 

−1 
s 

[ ∫ ∞ 

0 

γ (s ) e −usγ (s ) du 

] 
= L 

−1 
s 

[ 
1 

s 

] 
= 1 . (9) 

Now, to prove the positivity of G ( u, t ) it is sufficient to show that 

its Laplace transform G ( u, s ) is completely monotone on the posi- 

tive real axis s . For that we need to show that 

(i) the function γ ( s ) is completely monotone, and 

(ii) the function s γ ( s ) is a Bernstein function. 

If (ii) holds, it follows from Property (5), Appendix A , that 

the function e −sγ (s ) is completely monotone since the exponen- 

tial function is completely monotone and the composition of a 

completely monotone and a Bernstein function is itself completely 

monotone. Therefore, G ( u, s ) will be completely monotone, as a 

product of two completely monotone functions e −sγ (s ) and γ ( s ), 

see Property (1) from Appendix A . In what follows in Section 2 we 

consider three generic forms of the memory kernel γ ( t ), prove 

the positivity of the solutions of the corresponding generalized 

diffusion equations in the normal form and discuss the non- 

monoscaling behaviors of the MSDs for each case. 

2.1. Distributed order memory kernel 

The distributed order fractional diffusion equation in the nor- 

mal form, which was introduced in [7] , is a particular form of the 

generalized diffusion Eq. (1) . Indeed, let us take the memory kernel 

γ ( t ) as 

γ (t) = 

∫ 1 

0 

p(λ) 
t −λ

�( 1 − λ) 
dλ, (10) 

1 The Laplace transform of a given function f ( t ) is defined by f (s ) = 

L [ f (t)] = 

∫ ∞ 
0 e −st f (t ) dt . The Fourier transform of f ( x ) is given by f (k ) = F [ f (x ) ] = ∫ ∞ 

−∞ f (x ) e ıkx dx . Therefore, the inverse Fourier transform is defined by f (x ) = 

F −1 [ f (k ) ] = 

1 
2 π

∫ ∞ 
−∞ f (k ) e −ıkx dk . 
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