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a b s t r a c t 

Hölder functions represent mathematical models of nonlinear physical phenomena. This work investi- 

gates the general conditions of existence of fractional velocity as a localized generalization of ordinary 

derivative with regard to the exponent order. Fractional velocity is defined as the limit of the difference 

quotient of the function’s increment and the difference of its argument raised to a fractional power. A re- 

lationship to the point-wise Hölder exponent of a function, its point-wise oscillation and the existence of 

fractional velocity is established. It is demonstrated that wherever the fractional velocity of non-integral 

order is continuous then it vanishes. The work further demonstrates the use of fractional velocity as a 

tool for characterization of the discontinuity set of the derivatives of functions thus providing a natural 

characterization of strongly non-linear local behavior. A link to fractional Taylor expansions using Caputo 

derivatives is demonstrated. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Derivatives can be viewed as mathematical idealizations of the 

linear growth. Classical physical variables, such as velocity or ac- 

celeration, are considered to be differentiable functions of position. 

On the other hand, typical quantum mechanical paths [1–3] and 

Brownian motion trajectories were found to be non-differentiable. 

Hence, mathematical descriptions of strongly non-linear phe- 

nomena necessitate certain relaxation of the linearity assumption. 

While this can be achieved in several ways, the present work fo- 

cuses entirely on local descriptions in terms of limits of difference 

quotients. The theory is developed with the aim of providing tools 

for local study of strongly non-linear phenomena, for which ordi- 

nary derivatives diverge [4] . As useful conceptual models of such 

systems can be regarded singular functions, which violate the fun- 

damental theorem of calculus. 

The relaxation of the differentiability assumption opens new av- 

enues in describing physical phenomena [5,6] but also challenges 

existing mathematical methods. Hölderian functions in this regard 
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can be used as building blocks of such strongly non-linear mod- 

els. Difference quotients of functions of fractional order have been 

considered for the first time by du Bois–Reymond [7] and Faber 

[8] in their studies of the point-wise differentiability of functions. 

While these initial development followed from purely mathemati- 

cal interest later works were inspired from physical research ques- 

tions related to fractal phenomena. Cherbit [9] and later on Ben 

Adda and Cresson [10] introduced the notion of fractional velocity 

as the limit of the fractional difference quotient. Existence of the 

fractional velocity was demonstrated for some classes of functions 

in [10–12] . 

The present work establishes further the general conditions of 

existence of fractional velocity. The main result of the paper is 

that for fractional orders the fractional velocity is continuous only 

if it is zero. The set of discontinuities of fractional velocity is 

characterized and used to describe the local change of the func- 

tion in terms of its fractional Taylor expansion. In addition, the 

paper demonstrates that the regular Hölder functions are char- 

acterized by the fractional Taylor-Lagrange property; that is they 

can be approximated locally as fractional powers of appropriate 

orders. 

In contrast to usual fractional derivative, the physical interpre- 

tation of fractional velocity is easier to establish due to its local 
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character and the demonstrated fractional Taylor–Lagrange prop- 

erty ( Eq. (4) ). The fractional Taylor–Lagrange property was as- 

sumed and applied to establish a fractional conservation of mass 

formula in [13, Sec. 4] assuming the existence of a fractional Tay- 

lor expansion according to Odibat and Shawagfeh [14] . These au- 

thors derived fractional Taylor series development using repeated 

application of Caputo’s fractional derivative [14] . A direct connec- 

tion to Odibat and Shawagfeh’s results is established in Section 9 . 

In a related application, fractional velocities can be used to com- 

pute fractional Taylor expansions and to regularize derivatives of 

Hölder functions at non–differentiable points [15] . 

The results of the present paper are presented in a form acces- 

sible for an audience with diverse backgrounds, such as physics, 

computational biology, computer science etc. 

2. General definitions and notations 

The term function denotes a mapping f : R �→ R (or implicitly 

C �→ C ). The term operator denotes the mapping from functional 

expressions to functional expressions. Square brackets are used for 

the arguments of operators, while round brackets are used for the 

arguments of functions. 

The term Cauchy sequence will be always interpreted as a null 

sequence. 

Definition 1 (Asymptotic. O notation) The notation O ( x α) is in- 

terpreted as the convention that 

lim 

x → 0 

O ( x α) 

x α
= 0 

for α > 0. The notation O ( 1 ) will be interpreted to indicate a 

Cauchy-null sequence. 

Definition 2. We say that f is of (point-wise) Hölder class H 

β if 

for a given x there exist two positive constants C, δ ∈ R that for an 

arbitrary y in its domain and given | x − y | ≤ δ fulfill the inequal- 

ity | f (x ) − f (y ) | ≤ C| x − y | β , where | · | denotes the norm of the 

argument. 

For (mixed) orders n + β ( n ∈ N 0 ) the Hölder class H 

n + β desig- 

nates the functions for which the inequality 

| f (x ) − P n (x − y ) | ≤ C| x − y | n + β
holds under the same hypothesis for C, δ and y. P n (z) designates 

the polynomial P n (z) = f (y ) + 

n ∑ 

k =1 

a k z 
k . 

Remark 1. The polynomial P n ( x ) can be identified with the Taylor 

polynomial of order n of f ( x ) (see for example [11] ). 

Definition 3. Define the parametrized difference operators acting 

on the function f ( x ) as 

�+ 
ε [ f ] ( x ) := f (x + ε) − f (x ) , 

�−
ε [ f ] ( x ) := f (x ) − f (x − ε) , 

�2 
ε[ f ] ( x ) := f (x + ε) − 2 f (x ) + f (x − ε) , 

where ε > 0 1 . The three operators are referred to as forward dif- 

ference, backward difference and second order difference operators, 

respectively. 

3. Point-wise oscillation of functions 

The concept of point-wise oscillation is used to characterize the 

set of continuity of a function. To this end I build further on a 

technical result, which is presented as a Theorem 3.5.2 in Trench 

1 assumed to hold throughout the paper for the variable ε. 

[16] [p. 173]. Here the proof is slightly modified to account for sep- 

arate treatment of right- and left- continuity. 

Definition 4. Define forward oscillation and its limit as the opera- 

tors 

osc + ε [ f ] ( x ) := sup 

[ x,x + ε] 

[ f ] − inf 
[ x,x + ε] 

[ f ] 

osc + [ f ](x ) := lim 

ε→ 0 

(
sup 

[ x,x + ε] 

− inf 
[ x,x + ε] 

)
f = lim 

ε→ 0 
osc + ε [ f ] ( x ) 

and backward oscillation and its limit as the operators 

osc −ε [ f ] ( x ) := sup 

[ x −ε,x ] 

[ f ] − inf 
[ x −ε,x ] 

[ f ] 

osc −[ f ](x ) := lim 

ε→ 0 

(
sup 

[ x −ε,x ] 

− inf 
[ x −ε,x ] 

)
f = lim 

ε→ 0 
osc −ε [ f ] ( x ) 

according to previously introduced notation [11] . 

Definition 5. The notation for the pair μ:: ε will be interpreted as 

the implication that if LHS is fixed then RHS is fixed by the value 

chosen on the left, i.e. as an anonymous functional dependency ε = 

ε(μ) . 

Lemma 1 (Oscillation lemma) . Consider the function f : X �→ Y ⊆ R . 

Suppose that I + = [ x, x + ε] ⊆ Dom [ f ] , I − = [ x − ε, x ] ⊆ Dom [ f ] , 

respectively. 

If f is right-continuous in I + then osc + [ f ](x ) = 0 . Conversely, if 

osc + [ f ](x ) = 0 then f is right-continuous in I + . 
If f is left-continuous in I − then osc −[ f ](x ) = 0 . Conversely, if 

osc −[ f ](x ) = 0 then f is left-continuous in I −. 

Proof. 

Forward case Suppose that osc + [ f ] ( x ) = 0 . Then there exists a 

pair μ:: δ, δ ≤ ε, such that osc + 
δ

[ f ] ( x ) ≤ μ. Therefore, f is 

bounded in I + . Since μ is arbitrary we select x ′ , such that 

| f (x ′ ) − f (x ) | = μ′ ≤ μ

and set | x − x ′ | = δ′ . Since μ can be made arbitrary small so 

does μ′ . Therefore, f is (right)-continuous at x . 

Reverse case If f is (right-) continuous on x then there exist a 

pair μ:: δ such that ∣∣ f (x ′ ) − f (x ) 
∣∣ < μ/ 2 , 

∣∣x ′ − x 
∣∣ < δ/ 2 ∣∣ f (x ) − f (x ′′ ) 

∣∣ < μ/ 2 , 
∣∣x − x ′′ 

∣∣ < δ/ 2 

Then we add the inequalities and by the triangle inequality 

we have ∣∣ f (x ′ ) − f (x ′′ ) 
∣∣ ≤

∣∣ f (x ′ ) − f (x ) 
∣∣ + 

∣∣ f (x ) − f (x ′′ ) 
∣∣ < μ∣∣x ′ − x ′′ 

∣∣ ≤
∣∣x ′ − x 

∣∣ + 

∣∣x − x ′′ 
∣∣ < δ . 

However, since x ′ and x ′ ′ are arbitrary we can set the for- 

mer to correspond to the minimum and the latter to the 

maximum of f in the interval. therefore, by the least-upper- 

bond property we can identify f (x ′ ) �→ inf ε f (x ) , f (x ′′ ) �→ 

sup ε f (x ) . Therefore, osc + 
δ

[ f ](x ) < μ for 
∣∣x ′ − x ′′ 

∣∣ < δ (for the 

pair μ:: δ). Therefore, the limit is osc + [ f ](x ) = 0 . 

The left case follows by applying the right case, just proved, to 

the mirrored image of the function: f (−x ) . �

4. Fractional variations and fractional velocities 

Definition 6. Define fractional variation operators of order 0 ≤ β ≤
1 as 

υε+ 
β [ f ] ( x ) := 

�+ 
ε [ f ] ( x ) 

εβ
= 

f (x + ε) − f (x ) 

εβ
(1) 
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