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a b s t r a c t 

We introduce an efficient algorithm for computing fractional integrals and derivatives and apply it for 

solving problems of the calculus of variations of fractional order. The proposed approximations are par- 

ticularly useful for solving fractional boundary value problems. As an application, we solve a special class 

of fractional Euler–Lagrange equations. The method is based on Hale and Townsend algorithm for finding 

the roots and weights of the fractional Gauss–Jacobi quadrature rule and the predictor-corrector method 

introduced by Diethelm for solving fractional differential equations. Illustrative examples show that the 

given method is more accurate than the one introduced in [26], which uses the Golub–Welsch algorithm 

for evaluating fractional directional integrals. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Finding numerical approximations of fractional integrals or frac- 

tional derivatives of a given function is one of the most impor- 

tant problems in theory of numerical fractional calculus. The op- 

erators of fractional integration and fractional differentiation are 

more complicated than the classical ones, so their evaluation is 

also more difficult than the integer order case. Li et al. use spec- 

tral approximations for computing the fractional integral and the 

Liouville–Caputo derivative [22] . They also developed numerical 

algorithms to compute fractional integrals and Liouville–Caputo 

derivatives and for solving fractional differential equations based 

on piecewise polynomial interpolation [21] . In [29] , Pooseh et al. 

presented two approximations derived from continuous expan- 

sions of Riemann–Liouville fractional derivatives into series involv- 

ing integer order derivatives and they present application of such 

approximations to fractional differential equations and fractional 

problems of the calculus of variations. Some other computational 
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algorithms are also introduced in [24,28,32] . For increasing the ac- 

curacy of the calculation, using the Gauss–Jacobi quadrature rule is 

appropriate for removing the singularity of the integrand. So con- 

sidering the nodes and weights of the quadrature rule is an im- 

portant problem. There are many good papers in the literature ad- 

dressing the question of how to find the nodes and weights of the 

Gauss quadrature rule—see [6,36,37] and references therein. The 

more applicable and developed method is the Golub–Welsch (GW) 

algorithm [14,15] , that is used by many of the mathematicians who 

work in numerical analysis. This method takes O ( n 2 ) operations to 

solve the problem of finding the nodes and weights. Here we use 

a new method introduced by Hale and Townsend [16] , which is 

based on the Glasier–Liu–Rokhlin (GLR) algorithm [13] . It computes 

all the nodes and weights of the n -point quadrature rule in a total 

of O ( n ) operations. 

The structure of the paper is as follows. In Section 2 , we in- 

troduce the definitions of fractional operators and some relations 

between them. Section 3 discusses the Gauss–Jacobi quadrature 

rule of fractional order and its application to approximate the frac- 

tional operators. In Section 4 we present two methods for finding 

the nodes and weights of Gauss–Jacobi and discuss their advan- 

tages and disadvantages. Two illustrative examples are solved. In 

Section 5 applications to ordinary fractional differential equations 
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are presented. In Section 6 we investigate problems of the calculus 

of variations of fractional order and present a new algorithm for 

solving boundary value problems of fractional order. We end with 

Section 7 of conclusions and possible directions of future work. 

2. Preliminaries and notations about fractional calculus 

In this section we give some necessary preliminaries of the 

fractional calculus theory [18,27] , which will be used throughout 

the paper. 

Definition 2.1. The left and right Riemann–Liouville fractional in- 

tegrals of order α of a given function f are defined by 

a I 
α
x f (x ) = 

1 

�(α) 

∫ x 

a 

(x − t ) α−1 f (t ) dt 

and 

x I 
α
b f (x ) = 

1 

�(α) 

∫ b 

x 

(t − x ) α−1 f (t ) dt , 

respectively, where � is Euler’s gamma function, that is, 

�(x ) = 

∫ ∞ 

0 

t x −1 e −t dt, 

α > 0 with n − 1 < α ≤ n, n ∈ N , and a < x < b . The left Riemann–

Liouville fractional operator has the following properties: 

a I 
α
x a I 

β
x = a I x 

α+ β
, a I 

α
x a I 

β
x = a I 

β
x a I 

α
x , 

a I 
α
x x 

μ = 

�(μ + 1) 

�(α + μ + 1) 
x α+ μ, 

where α, β ≥ 0 and μ > −1 . Similar relations hold for the right 

Riemann–Liouville fractional operator. On the other hand, we have 

the left and right Riemann–Liouville fractional derivatives of order 

α > 0 that are defined by 

a D 

α
x f (x ) = 

1 

�(n − α) 

d n 

dx n 

∫ x 

a 

( x − t ) n −α−1 f (t ) dt 

and 

x D 

α
b f (x ) = 

(−1) n 

�(n − α) 

d n 

dx n 

∫ b 

x 

( t − x ) n −α−1 f ( t ) dt , 

respectively. 

There are some disadvantages when trying to model real world 

phenomena with fractional differential equations, when fractional 

derivatives are taken in Riemann–Liouville sense. One of them is 

that the Riemann–Liouville derivative of the constant function is 

not zero. Therefore, a modified definition of the fractional differ- 

ential operator, which was first considered by Liouville and many 

decades later proposed by Caputo [7] , is considered. 

Definition 2.2. The left and right fractional differential operators 

in Liouville–Caputo sense are given by 

C 
a D 

α
x f (x ) = 

1 

�(n − α) 

∫ x 

a 

( x − t ) n −α−1 f (n ) (t ) dt 

and 

C 
x D 

α
b f (x ) = 

(−1) n 

�(n − α) 

∫ b 

x 

( t − x ) n −α−1 f (n ) ( t ) dt , 

respectively. 

The Liouville–Caputo derivative has the following two proper- 

ties for n − 1 < α ≤ n and f ∈ L 1 [ a, b ]: 

( C a D 

α
x a I 

α
x f )(x ) = f (x ) 

and 

( a I 
α
x 

C 
a D 

α
x f )(x ) = f (x ) −

n −1 ∑ 

k =0 

f (k ) (0 

+ ) 
(x − a ) k 

k ! 
, t > 0 . 

Remark 2.3. Using the linearity property of the ordinary integral 

operator, one deduces that left and right Riemann–Liouville in- 

tegrals, left and right Riemann–Liouville derivatives and left and 

right Liouville–Caputo derivatives are linear operators. 

Another definition of a fractional differential operator, that is 

useful for numerical approximations, is the Grünwald–Letnikov 

derivative, which is a generalization of the ordinary derivative. It 

is defined as follows: 

D 

α
GL = lim 

n →∞ 

( t 
N 
) −α

�(−α) 

n −1 ∑ 

j=0 

�( j − α) 

�( j + 1) 
f 

(
t − t j 

n 

)
. 

3. Fractional Gauss–Jacobi quadrature rule 

It is well known that the Jacobi polynomials { P (λ,ν) 
n (x ) } ∞ 

n =0 
, 

λ, ν > −1 , x ∈ [ −1 , 1] , are the orthogonal system of polynomials 

with respect to the weight function 

(1 − x ) λ(1 + x ) ν, λ, ν > −1 , 

on the segment [ −1 , 1] : ∫ 1 

−1 

(1 − x ) λ(1 + x ) νP (λ,ν) 
n (x ) P (λ,ν) 

m 

(x ) dx = ∂ λ,ν
n δmn , (1) 

where 

∂ λ,ν
n = ‖ P (λ,ν) 

n ‖ 

2 
w 

λ,ν , w 

λ,ν (x ) = (1 − x ) λ(1 + x ) ν, 

δmn = 

{
1 , m = n, 

0 , m 	 = n 

(see, e.g., [35] ). These polynomials satisfy the three-term recur- 

rence relation 

P (λ,ν) 
0 

(x ) = 1 , P (λ,ν) 
1 

(x ) = 

1 

2 

(λ + ν + 2) x + 

1 

2 

(λ − ν) , 

P (λ,ν) 
n +1 

(x ) = 

(
a λ,ν

n x − b λ,ν
n 

)
P (λ,ν) 

n (x ) − c λ,ν
n P (λ,ν) 

n −1 
(x ) , n ≥ 2 , (2) 

where 

a λ,ν
n = 

(2 n + λ + ν + 1)(2 n + λ + ν + 2) 

2(n + 1)(n + λ + ν + 1) 
, 

b λ,ν
n = 

(ν2 − λ2 )(2 n + λ + ν + 1) 

2(n + 1)(n + λ + ν + 1)(2 n + λ + ν) 
, 

c λ,ν
n = 

(n + λ)(n + ν)(2 n + λ + ν + 2) 

(n + 1)(n + λ + ν + 1)(2 n + λ + ν) 
. 

The explicit form of the Jacobi polynomials is 

P (λ,ν) 
n (x ) = 

n ∑ 

k =0 

2 

n −k n !(k + ν + 1) n −k 

(n − k )!(n + k + λ + ν + 1) n −k k ! 
(t − 1) k , (3) 

where we use Pchhammer’s notation: 

(a ) l = a (a + 1)(a + 2) · · · (a + l − 1) 

(see [20] ). Furthermore, the Jacobi polynomials satisfy in the fol- 

lowing relations: 

P (λ,ν) 
n (−x ) = (−1) n P (λ,ν) 

n (x ) , 

d 

dx 
P (λ,ν) 

n (−x ) = (−1) n 
d 

dx 
P (λ,ν) 

n (x ) , 
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