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a b s t r a c t 

A spectral decomposition method is used to obtain solutions to a class of nonlinear differential equations. 

We extend this approach to the analysis of the fractional form of these equations and demonstrate the 

method by applying it to the fractional Riccati equation, the fractional logistic equation and a fractional 

cubic equation. The solutions reduce to those of the ordinary nonlinear differential equations, when the 

order of the fractional derivative is α = 1 . The exact analytic solutions to the fractional nonlinear differ- 

ential equations had not been previously known, so we evaluate how well the derived solutions satisfy 

the corresponding fractional dynamic equations. In the three cases we find a small, apparently generic, 

systematic error that we are not able to fully interpret. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Herein we propose a spectral method for solving fractional non- 

linear rate equations of a certain kind. The method is not pertur- 

bative, but neither is it exact, since it gives rise to systematic de- 

viations of the analytic solution from the numerical solution at in- 

termediate times that reaches a maximum value of 2%. On the one 

hand, the spectral method provides a remarkable good approxima- 

tion to the solution obtained through numerical integration. On the 

other hand, the source of the small but systematic deviation from 

the numerical solution remains a mystery. This paper presents the 

approach in detail and introduces a new problem that requires ex- 

planation. 

Despite the advances made into the understanding of complex 

nonlinear systems in the last half of the twentieth century, many 

physical phenomena failed to be described using the tools of or- 

dinary calculus. Nonlocal distributed effects and memory effects 

observed in relaxation phenomena [1] , living systems [2,3] , wave 

propagation in porous materials [4] have been more successfully 

modeled within the framework of the fractional calculus [5] . Frac- 

tional differential equations (FDE) have been adopted to explain 

these and other complex phenomena [6,7] . Since exact solutions 

to the majority of FDEs are not available, the search for appropriate 
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analytical and numerical methods is a subject of ongoing research. 

Recently, a number of approaches devoted to solving FDEs have 

been proposed. Examples include Adomian decomposition method 

[8] , homotopy perturbation method [9,10] , the fractional subequa- 

tion method. and the Haar wavelet method [11] , to name but a 

few. However, the convergence region of solutions obtained with 

these algorithms is rather small. 

It was hypothesized in [12] that the spectral decomposition 

method can be extended to the analysis of a class of nonlinear 

fractional differential equations (NFDEs). Herein we demonstrate 

the method by applying it to the fractional Riccati equation (FRE), 

the fractional logisticequation (FLE) and a fractional cubic equation 

(FCE), where the fractional-order is in the range 0 < α ≤ 1. The 

solutions obtained are shown to have the correct short-time and 

long-time behaviors. Additionally, they reduce to the well known 

solutions of the ordinary nonlinear differential equations, when the 

order of the fractional derivative is α = 1 . In the cases considered 

herein the exact analytic solution to the FNDE was not known pre- 

viously, we evaluate how well the derived solutions satisfy the cor- 

responding NFDE using numerical techniques. In all cases we find 

a very small, but systematic deviation of the analytic from the nu- 

merical solutions that has eluded our best effort s to interpret. One 

possibility, of course, is that the numerical technique used to solve 

the NFDE is the culprit, since it was based on numerically solving 

linear fractional equations. But this remains to be investigated. 
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In Section 2 we introduce the spectral decomposition of the so- 

lution to define the eigenvalue problem for integer-order linear and 

nonlinear rate equations, as well as NFDEs. In Section 3 we obtain 

a series expansion over the spectrum of eigenvalues and eigen- 

functions for the solution to three NFDEs, where the exponentials 

in the solutions to the integer-order equations, also obtained, are 

replaced with Mittag-Leffler functions (MLFs). Exact solutions to 

NFDEs are rare in the literature [13,14] , so to test the validity of 

the analytic results we numerically evaluate how the solutions ob- 

tained satisfy the appropriate NFDE. To our surprise the error func- 

tion measuring this fit is not zero, but varies in time, increasing as 

t 2 α at early times and decreasing as t −α at late times, and reaching 

a maximum difference of less than a few percent at an intermedi- 

ate time. This non-monotonic scaling difference is shown to occur 

with the solutions to the FRE, the FLE, as well as, the FCE, all with 

the same qualitative behavior in the error. In Section 8 we draw 

some tentative conclusions including the speculation that this sys- 

tematic deviation may be generic. 

2. Spectral decomposition 

2.1. Integer operator 

Let us begin by establishing the nomenclature used in the 

study of the nonlinear differential equations. Consider the one- 

dimensional first-order differential equation 

d 

dt 
X (t) = OX (t) , (1) 

where X ( t ) is the dynamic variable of interest and O is a generic 

operator acting on X ( t ). Allowing Eq. (1) to describe any dynamical 

system of interest entails the formal solution 

X (t) = e O 0 t x 0 , (2) 

where x 0 ≡ X (0) defines the initial condition in the phase space for 

the dynamic variable and the operator O 0 acts on the initial con- 

dition. The exponential operator is formally defined by the series 

expansion 

e O 0 t = 

∞ ∑ 

k =0 

( O 0 t ) 
k 

�( k + 1 ) 
(3) 

so that the solution Eq. (2) can be expressed as 

X (t) = 

∞ ∑ 

k =0 

( O 0 t ) 
k 

�( k + 1 ) 
x 0 = 

∞ ∑ 

k =0 

t k 

�( k + 1 ) 
O 0 

k x 0 (4) 

where the operator O 0 
k acts solely on the initial condition. Note 

that for a linear equation with a constant rate λ the operator is 

given by 

O 0 
k x 0 = 

(
λx 0 

∂ 

∂x 0 

)k 

x 0 = λk x 0 , (5) 

which when inserted into Eq. (4) and summing the series yields 

the exponential solution to the scalar rate equation 

X (t) = e λt x 0 . (6) 

It is apparent that Eq. (5) has a form suggestive of an eigenvalue 

equation and that the solution to the general integer-operator rate 

equation can be expressed as an eigenfunction expansion over the 

spectrum of eigenvalues 

X (t) = 

∞ ∑ 

k =0 

C k φk ( x 0 ) χk ( t ) . (7) 

The quantity φk ( x 0 ) χ k ( t ) is the eigenfunction, factored into a piece 

determined by the spectrum of eigenvalues { λk ; k = 0 , 1 , 2 , ··} , a 

piece determined by the initial condition x 0 , and the expansion 

coefficient C k determined by the dynamics and overall initial nor- 

malization. Inserting Eq. (7) into (1) , allows us to separate out the 

time-dependence of the components of the expansion 

d 

dt 
χk ( t ) = λk χk ( t ) ⇒ χk ( t ) = e λk t . (8) 

Correspondingly, the eigenvalue equations are given by 

O 0 φk ( x 0 ) = λk φk ( x 0 ) (9) 

and the eigenvalues are determined by the form of the operator. 

In the linear case just considered the operator is the same as 

before, so the equation for the eigenfunction is 

λx 0 
dφk 

dx 0 
= λk φk 

with the solution 

φk ( x 0 ) = x 
λk 
λ

0 
. 

The linear eigenvalue spectrum is degenerate λk = λ and the coef- 

ficients are determined from the initial condition to satisfy 

∞ ∑ 

k =0 

C k = 1 . 

The resulting solution is, of course, given by Eq. (6) . 

2.2. Non-integer (fractional) operator 

Now we assume that this general form of a solution to a differ- 

ential equation translates to the fractional calculus domain. Thus, 

we replace Eq. (1) with the fractional differential equation 

d α

dt α
X (t) = OX (t) , (10) 

where 0 < α ≤ 1. We assume the fractional derivative to be de- 

fined in the Caputo sense: 

d α

dt α
X (t) = 

1 

�( 1 − α) 

∫ t 

0 

X 

′ (τ ) 

( t − τ ) 
α dτ. (11) 

where X 

′ ( τ ) denotes the derivative of X ( τ ) with respect to its ar- 

gument. Eq. (10) can be solved analytically in terms of the MLF by 

employing the spectral decomposition introduced above in which 

case we have for the components of the eigenfunction 

d α

dt α
χk (t) = λk χk ( t ) , (12) 

to obtain the MLF evaluated over the spectrum of eigenvalues 

χk (t) = E α( λk t 
α) . (13) 

The MLF is defined by the series [15,16] 

E α( z ) = 

∞ ∑ 

k =0 

z k 

�( kα + 1 ) 
. (14) 

Consequently, inserting the MLF into the expansion for the solution 

yields [12] 

X (t) = 

∞ ∑ 

k =0 

C k φk ( x 0 ) E α( λk t 
α) (15) 

and the eigenvalues are determined by the operator in Eq. (9) . The 

MLF reduces to an exponential function when α = 1 , reducing the 

series expansion to the ordinary solution of Eq. (2) in that case. 

Note that we can adopt the same formal spectral decomposi- 

tion employed for the integer-derivative case discussed above for 

the fractional-order dynamics considered here. But, before we ex- 

plore the fractional case, let us examine an integer-order nonlinear 

dynamic equation. 
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