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a b s t r a c t 

In this paper we present an identification and validation scheme for stable autoregressive fractionally 

integrated moving average (ARFIMA) time series. The identification part relies on a recently introduced 

estimator which is a generalization of that of Kokoszka and Taqqu and a new fractional differencing al- 

gorithm. It also incorporates a low-variance estimator for the memory parameter based on the sample 

mean-squared displacement. The validation part includes standard noise diagnostics and backtesting pro- 

cedure. The scheme is illustrated on Universal Mobile Telecommunications System (UMTS) data collected 

in an urban area. We show that the stochastic component of the data can be modeled by the long mem- 

ory ARFIMA. This can help to monitor possible hazards related to the electromagnetic radiation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The concept of anomalous diffusion and fractional dynamics has 

deeply penetrated the statistical and chemical physics communi- 

ties, yet the subject has also become a major field in mathematics 

[1,2] . Historically, fractional dynamical systems are related to the 

concept of fractional dynamic equations. This is an active field of 

study in physics, mechanics, mathematics, and economics investi- 

gating the behavior of objects and systems that are described by 

using differentiation of fractional orders. The celebrated fractional 

Fokker–Planck equation (FFPE), describing anomalous diffusion in 

the presence of an external potential was derived explicitly in [3] , 

where methods of its solution were introduced and for some spe- 

cial cases exact solutions were calculated. 

Derivatives and integrals of fractional orders can be used to 

describe random phenomena that can be characterized by long 

(power-like) memory or self-similarity [1,2] . Long memory (or 

long-range dependence) is a property of certain stationary stochas- 

tic processes describing phenomena, which concern the events 

that are arbitrarily distant still influence each other exceptionally 

strong. It has been associated historically with slow decay of cor- 

relations and a certain type of scaling that is connected to self- 

similar processes [4,5] . 

Recently, there has been a great interest in long-range de- 

pendent and self-similar processes, in particular fractional Brow- 
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nian motion (FBM), fractional stable motion (FSM) and autore- 

gressive fractionally integrated moving average (ARFIMA), which 

are also called fractional autoregressive integrated moving average 

(FARIMA) [6,7] . This importance can be judged, for example, by a 

very large number of publications having one of these notions in 

the title, in areas such as finance and insurance [8–15] , telecom- 

munication [16–21] , hydrology [22] , climate studies [23] , linguistics 

[24] , DNA sequencing [25] or medicine [26] . Long-range depen- 

dent and self-similar processes also appear widely in other areas 

like biophysics [7,27–32] or astronomy [33] . These publications ad- 

dress a great variety of issues: detection of long memory and self- 

similarity in the data, statistical estimation of parameters of long- 

range dependence and self-similarity, limit theorems under long- 

range dependence and self-similarity, simulation of long memory 

and self-similar processes, relations to ergodicity and many others 

[6,7,34–37] . 

The FBM, FSM and ARFIMA serve as basic stochastic models 

for fractional anomalous dynamics [7] . The former two models are 

self-similar and their increments form long-range dependent pro- 

cesses. The discrete-time ARFIMA process is stationary and gener- 

alizes both models since aggregated, in the limit, it converges to ei- 

ther fractional Brownian or stable motion. As a consequence, a par- 

tial sum ARFIMA process can be considered as a unified model for 

fractional anomalous diffusion in experimental data [38] . A type 

of anomaly of the process is controlled only by its the memory 

parameter regardless of the underlying distribution [28] . We also 

note that there is a relationship between the ARFIMA and con- 

tinuous time random walk (CTRW) which is a classical model of 

anomalous diffusion [3,39] . The latter can be obtained by subordi- 
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nation of the Ornstein–Uhlenbeck process which discrete version 

is an autoregressive (AR) process, so a special case of the ARFIMA 

[40,41] . 

In contrast to FBM and FLSM, ARFIMA allows for different 

light- and heavy-tailed distributions, and both long (power-like) 

and short (exponential) dependencies [38] . Moreover, as a station- 

ary process, it provides prediction tools. 

It appears that the values of ARFIMA with Gaussian noise, for 

the memory parameter d greater than 0, have so slowly decaying 

autocovariance function that it is not absolutely summable. This 

behavior serves as a classical definition of the long-range depen- 

dence. However, it is also a well-known fact that the heavy-tailed 

probability distributions with diverging variance are ubiquitous in 

nature and finance [42–47] . 

The stable probability densities have the asymptotics decaying 

at infinity as | x | −1 −α, where α is the index of stability varying be- 

tween 0 and 2. They attract distributions having the same law of 

decay. On the contrary, the Gaussian distribution has the index of 

stability 2 and attracts all distributions with lighter tails [42,4 8,4 9] . 

Stably distributed random noises are observed in such diverse 

applications as plasma turbulence (density and electric field fluc- 

tuations [49–51] ), stochastic climate dynamics [52–54] , physiology 

(heartbeats [55] ), electrical engineering [56] , biology [28,30] , and 

economics [57,58] . Heavy-tailed distributions govern circulation of 

dollar bills [59] and behavior of the marine vertebrates in response 

to patchy distribution of food resources [60] . 

In this paper we propose an identification and validation 

scheme for ARFIMA processes with noise in the domain of attrac- 

tion of the stable law which is based on estimation algorithm in- 

troduced in [61] . The scheme is illustrated on the electromagnetic 

radiation data which shows long memory behavior which is also 

observed for telecommunication data in [19] . 

The paper is organized as follows: in Section 2 we recall ba- 

sic facts about a prominent example of long memory processes, 

namely ARFIMA time series. In Section 3 we introduce a step by 

step procedure for identification of a ARFIMA process. The proce- 

dure involves (i) a method of preliminary estimation of the mem- 

ory parameter based on the mean-squared displacement, (ii) a new 

method of fractional differencing which leads to model order esti- 

mation and (iii) the estimation formula for stable ARFIMA times 

series introduced in [61] . Section 4 is devoted to validation of the 

fitted model. It consists of analysis of residuals: testing their ran- 

domness and fitting a distribution which is done by standard sta- 

tistical tests, and backtesting which involves prediction formula for 

ARFIMA time series. The identification and validation procedure 

is illustrated in Section 5 on electromagnetic field data collected 

in the vicinity of an Universal Mobile Telecommunications System 

(UMTS) station in Wroclaw. After removing deterministic seasonal- 

ity and volatility from the data, a long memory ARFIMA process is 

identified and validated. In Section 6 a summary of the results is 

given. 

2. ARFIMA process 

In this section we briefly present the main facts about ARFIMA 

time series which were introduced in [62] and [63] . Such process 

{ X t }, denoted by ARFIMA( p, d, q ), is defined by 

�p (B ) X t = �q (B )(1 − B ) −d Z t , (1) 

where innovations (noise sequence) Z t are i.i.d. random variables 

with either finite or infinite variance. We also assume that the in- 

novations belong to the domain of attraction of an α-stable law 

with 0 < α ≤ 2. For the infinite variance case ( α < 2) this means 

that 

P (| Z t | > x ) = x −αL (x ) , as x → ∞ , (2) 

where L is a slowly varying function at infinity, and 

P (Z t > x ) 

P (| Z t | > x ) 
→ a, 

P (Z t < −x ) 

P (| Z t | > x ) 
→ b, as x → ∞ , (3) 

where a and b are nonnegative numbers such that a + b = 1 . 

The finite variance case ( α = 2 ) leads the domain of attraction 

of Gaussian law. Polynomials �p and �q have classical forms, 

i.e. �p (z) = 1 − φ1 z − φ2 z 
2 − . . . − φp z 

p is the autoregressive poly- 

nomial, �q (z) = 1 + θ1 z + θ2 z 
2 + . . . + θq z 

q is the moving average 

polynomial. The operator B , called the backward operator, satis- 

fies BX t = X t−1 and B j X t = X t− j , j ∈ N . The crucial part of ARFIMA 

Definition (1) is the operator (1 − B ) −d called the fractional inte- 

grating operator and the fractional number d called the memory 

parameter. 

The operator (1 − B ) −d has the infinite binomial expansion 

(1 − B ) −d Z t = 

∞ ∑ 

j=0 

b j (d) Z t− j , (4) 

where the b j ( d ) 
′ s are the coefficients in the expansion of the func- 

tion f (z) = (1 − z) −d , | z| < 1 , i.e. 

b j (d) = 

�( j + d) 

�(d)�( j + 1) 
, j = 0 , 1 , . . . , (5) 

where � is the gamma function. The series (4) is convergent al- 

most surely and ARFIMA Definition (1) is correct if and only if 

α(d − 1) < −1 ⇔ d < 1 − 1 

α
. (6) 

In the Gaussian case where α = 2 we have d < 1/2. Under 

Assumption (6) and when polynomials �p and �q do not have 

common roots, and �p has no roots in the closed unit disk 

{ z : | z | ≤ 1}, the ARFIMA( p, d, q ) time series defined by (1) has the 

causal moving average form 

X t ︸︷︷︸ 
ARFIMA (p,d,q ) 

= 

d −fractional integrating ︷ ︸︸ ︷ 
(1 − B ) −d �q (B ) 

�p (B ) 
Z t ︸ ︷︷ ︸ 

ARMA (p,q ) 

= 

∞ ∑ 

j=0 

c j (d) Z t− j , (7) 

where 

c j (d) = b j (d) + 

p ∑ 

i =1 

φi c j−i (d) + 

q ∑ 

k =1 

θk b j−k (d) , (8) 

for j = 0 , 1 , . . . Therefore ARFIMA( p, d, q ) time series can be ob- 

tained by d -fractional integrating of ARMA( p, q ) series. The d - 

fractional integrating through (1 − B ) −d operator builds the depen- 

dence between observations in a ARFIMA sequence, even as they 

are far apart in time. 

When d > −1 + 1 /α the ARFIMA( p, d, q ) time series { X t } is in- 

vertible and Definition (1) can be rewritten in the equivalent form 

�p (B ) 

d −frac . differencing ︷ ︸︸ ︷ 
(1 − B ) d 

ARFIMA (p,d,q ) ︷︸︸︷ 
X t ︸ ︷︷ ︸ 

ARMA (p,q ) 

= �q ( B ) Z t . (9) 

The operator (1 − B ) d , called the fractional differencing operator, 

is the inverse operator of the fractional integrating operator (1 −
B ) −d . It has the infinite binomial expansion of the form (4) with 

the opposite d . Hence, according to (9) , the ARMA( p, q ) time series 

can be obtained after d –fractional differencing of ARFIMA( p, d, q ) 

sequence. 

When the memory parameter d is close to 1/2, all the coeffi- 

cients b j ( d ) 
′ s are positive and converge to zero at a power rate. In 

view of series representation (4) , ARFIMA(0, d , 0) observation X t 

depends not only on the present noise observation Z t , but also de- 

pends strongly on the whole history of the noise process. Hence 
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