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a b s t r a c t 

A shape-memory polymer (SMP) is capable of memorizing its original shape, and can acquire a temporary 

shape upon deformation and returns to its permanent shape in response to an external stimulus such 

as a temperature change. SMPs have been widely used industrial and medical applications. Previously, 

differential equation models were developed to describe SMPs and their applications. However, these 

models are often of very complicated form, which require accurate numerical simulations. 

In this paper we argue that a variable-order fractional differential equation model of the shape- 

memory behavior is more suitable than constant-order fractional differential equation models in terms of 

modeling the memory behavior of SMPs. We develop a numerical method to simulate the variable-order 

model and, in particular, to identify the unknown variable order of the model. Numerical experiments 

are presented to show the utility of the method. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A shape-memory polymer (SMP) is a polymeric material that is 

capable of memorizing its original shape, and can acquire a tempo- 

rary shape upon deformation and returns to its permanent shape 

in response to an external stimulus such as a temperature change 

[22] . In recent years SMPs have found increasingly more applica- 

tions in a variety of areas, ranging from industrial to medical appli- 

cations and even everyday life. Examples in industrial applications 

of SMPs include shape-memory foams used in the building indus- 

try which can expand with temperature to seal window frame, 

heat-shrinkable tubes used for electronics, and self-deployable sun 

sails used in a spacecraft. Examples in medical applications of 

SMPs include intelligent medical devices and implants for mini- 

mally invasive surgery [2,7,25] . 

The transition between the temporary and permanent shape 

changes in an SMP is often triggered by a temperature change. 

An SMP has both a visible, current (temporary) shape and an in- 

visible, stored (permanent) shape. Once the SMP is manufactured 

in its permanent shape, it is reformed into a different, tem porary 

shape by processes of heating, deformation, and cooling. Then the 

SMP will maintain this temporary shape. The SMP will return to 
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its original (permanent) state only after it is activated by a prede- 

termined external temperature change. In short, the properties of 

SMPs are temperature dependent and in fact often very sensitive 

to an external temperature change by the nature of SMPs. Differ- 

ential equation models have been developed to describe the time- 

dependent evolution processes in the study and design of SMPs. 

In many important applications of SMPs, the response of SMPs 

to the external stimulus temperature must be very accurate. More- 

over, both the temporary and the permanent shapes of SMPs 

must be placed exactly in the desired locations. Since the prop- 

erties of SMPs are very sensitive to their external environment, 

the corresponding numerical models must have very high accu- 

racy and fidelity in their prediction of the thermo-mechanical be- 

havior of the SMPs under various conditions and circumstances. 

What further complicates the scenario is that the physical mech- 

anism and, correspondingly, the properties of thermally-induced 

SMPs depend heavily on polymer types, and may vary significantly 

in response to the same external environment. For example, the 

melting transition is responsible for the semicrystalline polymers 

[8] . The nematic-isotropic transition can induce the shape-memory 

effect (SME) in liquid crystalline elastomers [2] . The thermally- 

induced SME in amorphous polymers originates from the glass 

transition [15] , the modeling and numerical simulation of which is 

the main objective of this paper although the modeling technique 

developed in the paper can be applied to other types of SMPs. 
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Two main approaches, namely the phase transition modeling 

approach and the thermo-viscoelastic modeling approach, have 

been used to model the SME [14] . The thermo-viscoelastic mod- 

eling approach is physically relevant and is based upon the one- 

dimensional rheological models. This is the reason why it has at- 

tracted wide attentions. To model the SME, the modulus or the 

viscosity the model are assumed to be temperature dependent 

[14,21,22] . However, the resulting (integer-order) differential equa- 

tion models for accurately describing the SME are of a very compli- 

cated form and typically contain a large number of parameters to 

be determined [15,24] . This introduces mathematical and numeri- 

cal difficulties as well as uncertainty that are difficult and costly in 

numerical simulations. 

In recent years fractional-order differential equation (FDE) mod- 

els are emerging as powerful tools for modeling challenging phe- 

nomena involving long-time memory or long-range spatial interac- 

tions in many disciplines and applications [12,16] . In particular, it 

was shown that FDE models can accurately describe complex vis- 

coelastic behaviors with only a few parameters used [6,16,18,23] . 

This is not an coincidence but has deep physical reasons behind. 

Recall that classical integer-order differential equation models were 

derived under the assumption that there exist (i) a mean free path 

and (ii) a mean waiting time in the underlying particle move- 

ments at the microscopic scale [11,12] . These assumptions virtu- 

ally hold for evolution processes in homogeneous media. The fun- 

damental reason why SMPs work lies in their molecular network 

structure which consists of at least two separate phases, as well 

as their change in response to an external stimulus temperature 

change. As the material structure is heterogeneous in general, an 

integer-order differential equation model often fails to provide an 

appropriate description of the evolution process. In contrast, an 

FDE model has been shown to provide a more accurate description 

of the evolution process. Moreover, as SMPs have long-time mem- 

ory effect, a fractional-order-in-time differential equation model is 

well suited for modeling the behavior of SMPs [3,11,12,16] . Finally, 

because SMPs can have significant changes of their shapes depend- 

ing on whether an external stimulus temperature change exceeds 

their prescribed temperature, which in turn will significantly af- 

fect their microscopic network structure. Hence, a variable-order 

FDE model seems to be a more appropriate model to describe the 

shape-memory behaviors of amorphous polymers, which we will 

study in this paper. 

The rest of the paper is as follows. In Section 2 we present a 

fractional-order differential equation model of the shape-memory 

behavior of SMPs. In Section 3 we describe and discuss why a 

variable-order fractional differential equation model seems to be 

more appropriate the shape-memory behavior of SMPs. 

2. A fractional-order differential equation model of 

shape-memory behavior of SMPs 

In this section we present a fractional-order Zener differential 

equation model of the shape-memory behavior of SMPs. The one- 

dimensional rheological representative of a fractional-order Zener 

model is shown below in Fig. 1 , which consists of an equilibrium 

elastic spring and a fractional damping Maxwell element. 

The total strain in the non-equilibrium branch equals to that of 

the equilibrium branch, leading to 

ε = εe + εv . (1) 

The stress response is given by 

σ = E eq ε + E neq εe , (2) 

where E eq is the modulus of the equilibrium elastic spring and 

E neq is the modulus of the spring in the non-equilibrium fractional 

Fig. 1. Illustration of a fractional-order Zener model. 

damping Maxwell element. The evolution of εv in the fractional 

damping element can be determined by [5,23] 

C 
0 D 

α
t ε

v = 

ε − εv 

τα
, εv | t=0 = 0 . (3) 

Here τ is the temperature-dependent relaxation time of the 

Maxwell element and is given by 

τ = 

{ 

τ re f 10 

− C 1 (T−T g ) 

C 2 + T−T g , T ≥ T g , 

τ re f 10 

A ( 1 T − 1 
T g 

) 
, T < T g 

(4) 

where the temperature profile T is a function of time t . C 
0 
D 

α
t with 

0 < α < 1 is the Caputo fractional derivative operator of order α
[16] which is defined by 

C 
0 D 

α
t ε

v (t) = 

1 

�(1 − α) 

∫ t 

0 

dεv ( s ) 

ds 
( t − s ) −αds. (5) 

The combination of Eqs. (1) , (2) and (3) yields the following 

fractional shape-memory behavior model ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

C 
0 D 

α
t ε

v = 

σ (t) − E eq εv 

(E neq + E eq ) τα
, 

ε = 

σ (t) + E neq εv 

E neq + E eq 
, 

εv | t=0 = 0 . 

(6) 

To close the sytem (6) , a constitutive relation of σ ( t ) is provided 

in the numerical simulation. For their numerical investigation, we 

refer readers to, e.g., the work in [5,23] . 

3. A variable-order FDE model of the shape-memory behavior 

and its numerical method 

It is known that the fractional order α in an FDE model is re- 

lated to the Hurst index or the fractal dimension of the material 

matrix [11] . Recall that the fundamental reason why SMPs can re- 

turn to its original (permanent) shape from their current (tempo- 

rary) shape lies in the fact that their molecular network struc- 

tures, which consists of at least two separate phases, change in 

response to an external stimulus temperature change. As their net- 

work structures change, their fractal dimensions are anticipated to 

change. Hence, a variable-order FDE model is expected to be more 

suitable than a constant-order FDE model. Motivated by these ob- 

servations, we consider the following variable-order FDE model of 

the shape-memory behavior [3,4,19,20] ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

C 
0 D 

α(t) 
t εv = 

σ (t) − E eq εv 

(E neq + E eq ) τα(t) 
, t ∈ [0 , t f inal ] 

ε = 

σ (t) + E neq εv 

E neq + E eq 
, t ∈ [0 , t f inal ] , 

εv | t=0 = 0 , 

(7) 

with 0 < α( t ) < 1. The variable-order fractional derivative C 
0 
D 

α(t) 
t is 

defined by [1,4,17,19] 

C 
0 D 

α(t) 
t εv (t) = 

1 

�(1 − α(t)) 

∫ t 

0 

dεv ( s ) 

ds 
( t − s ) −α(t) ds. (8) 
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