Multifractal analysis of weighted local entropies

Xiang Shao, Rongliang Lu, Cao Zhao*
School of Mathematical Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China

ARTICLE INFO

Article history:

Received 8 August 2016
Revised 31 December 2016
Accepted 3 January 2017

MSC:

37D25
37D35
Keywords:
Multifractal analysis
Local entropy

Abstract

In this paper, we give the multifractal analysis of the weighted local entropies for arbitrary invariant measures. Our result is applied to self-affine systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Background and introduction

Let (X, d, T) be a dynamical system, where (X, d) is a compact metric space and $T: X \rightarrow X$ is a continuous map. The set $M(X)$ of all Borel probability measures is compact under the weak* topology. Denote by $M(X, T) \subset M(X)$ the subset of all T-invariant measures and $E(X, T) \subset M(X, T)$ the subset of all ergodic measures. Multifractal analysis is concerned with the study of pointwise dimension of a Borel measure μ (provided the limit exists):
$d_{\mu}(x)=\lim _{\epsilon \rightarrow 0} \frac{\log \mu(B(x, \epsilon))}{\log \epsilon}$,
where $B(x, \epsilon)$ is an open ϵ-neighborhood of x. Set
$X_{\alpha}:=\left\{x \in X: d_{\mu}(x)=\alpha\right\}$.
The purpose is to describe the set X_{α}. It is worthwhile to mention that the multifractal analysis of Birkhoff average is closely related to the pointwise dimension of the Borel measure. We refer the reader to Refs. $[4,10,12,14,16]$. Here, we can introduce the general form of Pesin's multifractal formalism in [8], or [2] as follows. Consider a function $g: Y \rightarrow[-\infty,+\infty]$ in a subset Y of X. The level set
$K_{\alpha}^{g}=\{x \in Y: g(x)=\alpha\}$

[^0]are pairwise disjoint, and we obtain a multifractal decomposition of X given by
$X=(X \backslash Y) \cup \bigcup_{\alpha \in[-\infty,+\infty]} K_{\alpha}^{g}$.
Let G be a function defined in the set of subsets of X. The multifractal spectrum : $\mathcal{F}:[-\infty,+\infty] \rightarrow \mathbb{R}$ of the pair (g, G) is defined by
$\mathcal{F}(\alpha)=G\left(K_{\alpha}^{g}\right)$,
where g may denote the Birkhoff averages, Lyapunov exponents, pointwise dimension or local entropies and G may denote the topological entropy, topological pressure or Hausdorff dimension. For fixed $q \in \mathbb{R}$ and $\mu \in M(X)$, Olsen [7] defined a generalized Hausdorff dimension $\operatorname{dim}_{\mu}^{q}(\cdot)$ for $q \in \mathbb{R}$ (for the detailed definitions, see Section 3) and established the relation formula of dimensions. And then in [6], Olsen studied self-affine multifractal analysis in \mathbb{R}^{d} by using the formalism introduced in [7] with separation condition. We state these results as follows:

- Let μ be a cookie-cutter measure in \mathbb{R} or graph directed measure in \mathbb{R}^{d} with totally disconnected support. Then
$\operatorname{dim}_{H}\left(X_{\alpha}\right)=\inf _{q}\left\{q \alpha+\operatorname{dim}_{\mu}^{q}(\operatorname{supp} \mu)\right\}$.
- Let μ denote the self-affine Sierpinski Sponge measure. Then
$\operatorname{dim}_{H}\left(X_{\alpha}\right)=\inf _{q}\left\{q \alpha+\operatorname{dim}_{\mu}^{q}(\operatorname{supp} \mu)\right\}$.
In dynamical systems, the dynamical ball is always studied instead of the geometry ball. More precisely, for $x \in X$, we define the dynamical ball $B_{n}(x, \epsilon)$ by
$B_{n}(x, \epsilon):=\left\{y \in X: d\left(T^{j} x, T^{j} y\right)<\epsilon, 0 \leq j \leq n-1\right\}$.

We define the low(resp.upper)local(pointwise)entropies as follows:
$\underline{h}_{\mu}(T, x)=\lim _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(B_{n}(x, \epsilon)\right)$,
$\bar{h}_{\mu}(T, x)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(B_{n}(x, \epsilon)\right)$.
Note that the limits exist as ϵ tends 0 . We say that the local entropy exists at x if
$\underline{h}_{\mu}(T, x)=\bar{h}_{\mu}(T, x)$.
In this case the common value will be denoted by $h_{\mu}(T, x)$. And then, for $\mu \in M(X, T)$ and $\alpha \geq 0$, define
$\widehat{K}_{\alpha}(\mu)=\left\{x \in X: h_{\mu}(T, x)=\alpha\right\}$.
In [13], Takens and Verbitski defined the (q, μ)-entropy $h_{\mu}(T, q$, .) by extending the definition of generalized Hausdorff dimension $\operatorname{dim}_{\mu}^{q}(\cdot)$ and showed the following formula:
$h_{\text {top }}\left(\widehat{K}_{\alpha}(\mu)\right)=q \alpha+h_{\mu}\left(T, q, \widehat{K}_{\alpha}(\mu)\right)$,
where $h_{\text {top }}(\cdot)$ denotes the topological entropy. Later, in 2007, Yan and Chen [15] considered the multifractal spectra associated with Poincaré recurrences and established an exact formula on multifractal spectrum of local entropies for recurrence time.

A natural question is that how does this work without the separation condition? In this paper, we will study the self-affine multifractal in general topological dynamical systems using the weighted entropy introduced in [5] without the separation condition in [6].

2. Preliminaries and main results

In [5], Feng and Huang introduced the weighted entropy for factor maps between general topological dynamical systems. Let $k \geq$ 2. Assume that $\left(X_{i}, d_{i}\right), i=1, \ldots, k$, are compact metric spaces, and (X_{i}, T_{i}) are topological dynamical systems. Moreover, assume that for each $1 \leq i \leq k-1$, (X_{i+1}, T_{i+1}) is a factor of (X_{i}, T_{i}) with a factor map $\pi_{i}: X_{i} \rightarrow X_{i+1}$; in other words $\pi_{1}, \ldots, \pi_{k-1}$ are continuous maps such that the following diagrams commute:

For convenience, we use π_{0} be the identity map on X_{1}. Define $\tau_{i}: X_{1} \rightarrow X_{i+1}$ by $\tau_{i}=\pi_{i} \circ \pi_{i-1} \circ \cdots \circ \pi_{0}$, for $i=0,1, \ldots, k-1$. Let $M\left(X_{i}, T_{i}\right)$ denote the set of all T_{i}-invariant Borel probability measures on X_{i} and $E\left(X_{i}, T_{i}\right)$ denote the set of ergodic measures. Fix $\mathbf{a}=\left(\mathbf{a}_{1}, \mathbf{a}_{\mathbf{2}}, \ldots, \mathbf{a}_{\mathbf{k}}\right) \in \mathbb{R}^{\mathbf{k}}$ with $a_{1}>0$ and $a_{i} \geq 0$ for $i \geq 2$. For $\mu \in$ $M\left(X_{1}, T_{1}\right)$, we call
$h_{\mu}^{\mathbf{a}}\left(T_{1}\right):=\sum_{i=1}^{k} a_{i} h_{\mu \circ \tau_{i-1}^{-1}}\left(T_{i}\right)$
the a-weighted measure-theoretic entropy of μ with respect to T_{1}, or simply, the a-weighted entropy of μ, where $h_{\mu \circ \tau_{i-1}^{-1}}\left(T_{i}\right)$ denotes the measure-theoretic entropy of $\mu \circ \tau_{i-1}^{-1}$ with respect to T_{i}.

Definition 2.1 (a-weighted Bowen ball). For $x \in X_{1}, n \in \mathbb{N}, \epsilon>0$, let

$$
\begin{aligned}
B_{n}^{\mathrm{a}}(x, \epsilon): & =\left\{y \in X_{1}: d_{i}\left(T_{i}^{j} \tau_{i-1} x, T_{i}^{j} \tau_{i-1} y\right)\right. \\
& \left.<\epsilon \text { for } 0 \leq j \leq\left\lceil\left(a_{1}+\cdots+a_{i}\right) n\right\rceil-1, i=1, \ldots, k\right\}
\end{aligned}
$$

where $\lceil u\rceil$ denotes the least integer $\geq u$. We call $B_{n}^{\mathrm{a}}(x, \epsilon)$ the nth a-weighted Bowen ball of radius ϵ centered at x.

Remark 2.1. Return back to the metric spaces $\left(X_{i}, d_{i}\right)$ and topological dynamical systems $\left(X_{i}, T_{i}\right), i=1,2, \ldots, k$. For $n \in \mathbb{N}$, define a metric d_{n}^{a} on X_{1} by

$$
\begin{aligned}
d_{n}^{\mathrm{a}}(x, y) & =\sup \left\{d_{i}\left(T_{i}^{j} \tau_{i-1} x, T_{i}^{j} \tau_{i-1} y\right)\right. \\
& \left.<\epsilon \text { for } 0 \leq j \leq\left\lceil\left(a_{1}+\cdots+a_{i}\right) n\right\rceil-1, i=1, \ldots, k\right\} .
\end{aligned}
$$

Definition 2.2 [5]. Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$ with $a_{1}>0$, and a_{i} ≥ 0 for $2 \leq i \leq k$. For any $n \in \mathbb{N}$, and $\epsilon>0$, define
$\mathcal{T}_{n, \epsilon}^{\mathbf{a}}:=\left\{A \subset X_{1}: A\right.$ is a Borel subset of $B_{n}^{\mathbf{a}}(x, \epsilon)$ for some $\left.x \in X_{1}\right\}$. For any subset $Z \subset X_{1}, s \geq 0$ and $N \in \mathbb{N}$, define
$\Lambda^{\mathbf{a}}(Z, \epsilon, s, N)=\inf \sum_{j} \exp \left(-s n_{j}\right)$
where the infimum is taken over all countable collections $\Gamma=$ $\left\{\left(n_{j}, A_{j}\right)\right\}, n_{j} \geq N, A_{j} \in \mathcal{T}_{n_{j}, \epsilon}^{\mathbf{a}}$, and $\bigcup_{\left(n_{j}, A_{j}\right) \in \Gamma} A_{j} \supset Z$. The quantity $\Lambda^{\mathbf{a}}(Z, \epsilon, s, N)$ does not decrease with N, hence the following limit exists:
$\Lambda^{\mathbf{a}}(Z, \epsilon, s)=\lim _{N \rightarrow \infty} \Lambda^{\mathbf{a}}(Z, \epsilon, s, N)$.
There exists a critical value of the parameters, which we will denote by $h^{\mathbf{a}}(Z, \epsilon)$, where $\Lambda^{\mathbf{a}}(Z, \epsilon, s)$ jumps from ∞ to 0 , i.e
$\Lambda^{\mathbf{a}}(Z, \epsilon, s)= \begin{cases}0 & \text { if } s>h^{\mathbf{a}}(Z, \epsilon) \\ \infty & \text { if } s<h^{\mathbf{a}}(Z, \epsilon) .\end{cases}$
Clearly, $h^{\mathbf{a}}(Z, \epsilon)$ does not decrease with ϵ, and hence the following limit exists:
$h^{\mathbf{a}}(Z)=\lim _{\epsilon \rightarrow 0} h^{\mathbf{a}}(Z, \epsilon)$.
Definition 2.3. We define the weighted lower (upper) local (pointwise) entropies as follows:

$$
\begin{aligned}
& \underline{h}_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)=\lim _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(B_{n}^{\mathbf{a}}(x, \epsilon)\right), \\
& \bar{h}_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty}-\frac{1}{n} \log \mu\left(B_{n}^{\mathbf{a}}(x, \epsilon)\right) .
\end{aligned}
$$

We say that the weighted local entropy exists at x if
$\underline{h}_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)=\bar{h}_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)$.
In this case the common value will be denoted by $h_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)$. Similar to the Brin-Katok formula in [3], Feng and Huang [5] showed the weighted version of Brin-Katok formula as follows.
Theorem 2.1 [5]. For each ergodic measure $\mu \in M\left(X_{1}, T_{1}\right)$, we have

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{-\log \mu\left(B_{n}^{\mathrm{a}}(x, \epsilon)\right)}{n} \\
& \quad=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{-\log \mu\left(B_{n}^{\mathbf{a}}(x, \epsilon)\right)}{n}=h_{\mu}^{\mathbf{a}}\left(T_{1}\right)
\end{aligned}
$$

for μ-a.e., $x \in X_{1}$.
Let $\mu \in M\left(X_{1}, T_{1}\right)$ be an invariant Borel measure. For $\alpha \geq 0$, define
$K_{\alpha}(\mu)=\left\{x \in X_{1}: h_{\mu}^{\mathbf{a}}\left(T_{1}, x\right)=\alpha\right\}$.
In this paper, we are interested in local entropies and spectra associated with the weighted Bowen ball. More precisely, we study the size of the set $K_{\alpha}(\mu)$.

https://daneshyari.com/en/article/5499743

Download Persian Version:
https://daneshyari.com/article/5499743

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: tdshxi@njupt.edu.cn (X. Shao), wukonglrl@163.com (R. Lu), izhaocao@126.com (C. Zhao).

