Contents lists available at ScienceDirect

Chaos, Solitons and Fractals

Nonlinear Science, and Nonequilibrium and Complex Phenomena

journal homepage: www.elsevier.com/locate/chaos

Multifractal analysis of weighted local entropies

Xiang Shao, Rongliang Lu, Cao Zhao*

School of Mathematical Science, Nanjing Normal University, Nanjing 210023, Jiangsu, PR China

ARTICLE INFO

ABSTRACT

Article history: Received 8 August 2016 Revised 31 December 2016 Accepted 3 January 2017

measures. Our result is applied to self-affine systems.

© 2017 Elsevier Ltd. All rights reserved.

MSC: 37D25 37D35

Keywords: Multifractal analysis Local entropy

1. Background and introduction

Let (X, d, T) be a dynamical system, where (X, d) is a compact metric space and $T: X \rightarrow X$ is a continuous map. The set M(X) of all Borel probability measures is compact under the weak* topology. Denote by $M(X, T) \subset M(X)$ the subset of all *T*-invariant measures and $E(X, T) \subset M(X, T)$ the subset of all ergodic measures. Multifractal analysis is concerned with the study of pointwise dimension of a Borel measure μ (provided the limit exists):

$$d_{\mu}(x) = \lim_{\epsilon \to 0} \frac{\log \mu(B(x,\epsilon))}{\log \epsilon},$$

where $B(x, \epsilon)$ is an open ϵ -neighborhood of x. Set

$$X_{\alpha} := \{ x \in X : d_{\mu}(x) = \alpha \}.$$

The purpose is to describe the set X_{α} . It is worthwhile to mention that the multifractal analysis of Birkhoff average is closely related to the pointwise dimension of the Borel measure. We refer the reader to Refs. [4,10,12,14,16]. Here, we can introduce the general form of Pesin's multifractal formalism in [8], or [2] as follows. Consider a function $g: Y \to [-\infty, +\infty]$ in a subset Y of X. The level set

$$K^{g}_{\alpha} = \{x \in Y : g(x) = \alpha\}$$

* Corresponding author.

http://dx.doi.org/10.1016/j.chaos.2017.01.002 0960-0779/© 2017 Elsevier Ltd. All rights reserved. are pairwise disjoint, and we obtain a *multifractal decomposition* of X given by

$$X = (X \setminus Y) \cup \bigcup_{\alpha \in [-\infty, +\infty]} K_{\alpha}^g.$$

In this paper, we give the multifractal analysis of the weighted local entropies for arbitrary invariant

Let *G* be a function defined in the set of subsets of *X*. The *multifractal spectrum* : $\mathcal{F} : [-\infty, +\infty] \to \mathbb{R}$ of the pair (*g*, *G*) is defined by

 $\mathcal{F}(\alpha) = G(K_{\alpha}^{g}),$

where *g* may denote the Birkhoff averages, Lyapunov exponents, pointwise dimension or local entropies and *G* may denote the topological entropy, topological pressure or Hausdorff dimension. For fixed $q \in \mathbb{R}$ and $\mu \in M(X)$, Olsen [7] defined a generalized Hausdorff dimension $\dim_{\mu}^{q}(\cdot)$ for $q \in \mathbb{R}$ (for the detailed definitions, see Section 3) and established the relation formula of dimensions. And then in [6], Olsen studied self-affine multifractal analysis in \mathbb{R}^{d} by using the formalism introduced in [7] with separation condition. We state these results as follows:

• Let μ be a cookie-cutter measure in \mathbb{R} or graph directed measure in \mathbb{R}^d with totally disconnected support. Then

$$\dim_{H}(X_{\alpha}) = \inf\{q\alpha + \dim_{\mu}^{q}(\operatorname{supp}\mu)\}.$$

• Let μ denote the self-affine Sierpinski Sponge measure. Then $\dim_H(X_{\alpha}) = \inf_a \{q\alpha + \dim_{\mu}^q (\operatorname{supp} \mu)\}.$

In dynamical systems, the dynamical ball is always studied instead of the geometry ball. More precisely, for $x \in X$, we define the dynamical ball $B_n(x, \epsilon)$ by

$$B_n(x,\epsilon) := \{ y \in X : d(T^j x, T^j y) < \epsilon, 0 \le j \le n-1 \}$$

CrossMark

E-mail addresses: tdshxi@njupt.edu.cn (X. Shao), wukonglrl@163.com (R. Lu), izhaocao@126.com (C. Zhao).

We define the *low(resp.upper)local(pointwise)entropies* as follows:

$$\underline{h}_{\mu}(T, x) = \liminf_{\epsilon \to 0} \liminf_{n \to \infty} -\frac{1}{n} \log \mu(B_n(x, \epsilon)),$$
$$\overline{h}_{\mu}(T, x) = \liminf_{\epsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu(B_n(x, \epsilon)).$$

Note that the limits exist as ϵ tends 0. We say that the local entropy exists at *x* if

 $\underline{h}_{\mu}(T, x) = \overline{h}_{\mu}(T, x).$

In this case the common value will be denoted by $h_{\mu}(T, x)$. And then, for $\mu \in M(X, T)$ and $\alpha \ge 0$, define

$$K_{\alpha}(\mu) = \{ x \in X : h_{\mu}(T, x) = \alpha \}.$$

In [13], Takens and Verbitski defined the (q, μ) -entropy $h_{\mu}(T, q, \cdot)$ by extending the definition of generalized Hausdorff dimension $\dim_{\mu}^{q}(\cdot)$ and showed the following formula:

$$h_{top}(K_{\alpha}(\mu)) = q\alpha + h_{\mu}(T, q, K_{\alpha}(\mu)),$$

where $h_{top}(\cdot)$ denotes the topological entropy. Later, in 2007, Yan and Chen [15] considered the multifractal spectra associated with Poincaré recurrences and established an exact formula on multi-fractal spectrum of local entropies for recurrence time.

A natural question is that how does this work without the separation condition? In this paper, we will study the self-affine multifractal in general topological dynamical systems using the weighted entropy introduced in [5] without the separation condition in [6].

2. Preliminaries and main results

In [5], Feng and Huang introduced the weighted entropy for factor maps between general topological dynamical systems. Let $k \ge 2$. Assume that $(X_i, d_i), i = 1, ..., k$, are compact metric spaces, and (X_i, T_i) are topological dynamical systems. Moreover, assume that for each $1 \le i \le k - 1$, (X_{i+1}, T_{i+1}) is a factor of (X_i, T_i) with a factor map $\pi_i : X_i \to X_{i+1}$; in other words $\pi_1, ..., \pi_{k-1}$ are continuous maps such that the following diagrams commute:

For convenience, we use π_0 be the identity map on X_1 . Define $\tau_i : X_1 \to X_{i+1}$ by $\tau_i = \pi_i \circ \pi_{i-1} \circ \cdots \circ \pi_0$, for $i = 0, 1, \ldots, k-1$. Let $M(X_i, T_i)$ denote the set of all T_i -invariant Borel probability measures on X_i and $E(X_i, T_i)$ denote the set of ergodic measures. Fix $\mathbf{a} = (\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k) \in \mathbb{R}^k$ with $a_1 > 0$ and $a_i \ge 0$ for $i \ge 2$. For $\mu \in M(X_1, T_1)$, we call

$$h^{\mathbf{a}}_{\mu}(T_1) := \sum_{i=1}^{\kappa} a_i h_{\mu \circ \tau_{i-1}^{-1}}(T_i)$$

the a-weighted measure-theoretic entropy of μ with respect to T_1 , or simply, the a-weighted entropy of μ , where $h_{\mu \circ \tau_{i-1}^{-1}}(T_i)$ denotes the measure-theoretic entropy of $\mu \circ \tau_{i-1}^{-1}$ with respect to T_i .

Definition 2.1 (a-weighted Bowen ball). For $x \in X_1$, $n \in \mathbb{N}$, $\epsilon > 0$, let

$$B_n^{\mathbf{a}}(x,\epsilon) := \{ y \in X_1 : d_i(T_i^j \tau_{i-1}x, T_i^j \tau_{i-1}y) \\ < \epsilon \text{ for } 0 \le j \le \lceil (a_1 + \dots + a_i)n \rceil - 1, i = 1, \dots, k \}$$

where $\lceil u \rceil$ denotes the least integer $\geq u$. We call $B_n^{\mathbf{a}}(x, \epsilon)$ the *n*th **a**-weighted Bowen ball of radius ϵ centered at *x*.

Remark 2.1. Return back to the metric spaces (X_i, d_i) and topological dynamical systems $(X_i, T_i), i = 1, 2, ..., k$. For $n \in \mathbb{N}$, define a metric d_n^a on X_1 by

$$d_n^{\mathbf{a}}(x,y) = \sup\{d_i(T_i^J\tau_{i-1}x,T_i^J\tau_{i-1}y) \\ < \epsilon \text{ for } 0 \le j \le \lceil (a_1+\cdots+a_i)n\rceil - 1, i = 1,\ldots,k\}.$$

Definition 2.2 [5]. Let $\mathbf{a} = (a_1, a_2, \dots, a_k) \in \mathbb{R}^k$ with $a_1 > 0$, and $a_i \ge 0$ for $2 \le i \le k$. For any $n \in \mathbb{N}$, and $\epsilon > 0$, define

 $\mathcal{T}_{n,\epsilon}^{\mathbf{a}} := \{A \subset X_1 : A \text{ is a Borel subset of } B_n^{\mathbf{a}}(x,\epsilon) \text{ for some } x \in X_1\}.$ For any subset $Z \subset X_1$, $s \ge 0$ and $N \in \mathbb{N}$, define

$$\Lambda^{\mathbf{a}}(Z,\epsilon,s,N) = \inf \sum_{j} \exp(-sn_{j})$$

where the infimum is taken over all countable collections $\Gamma = \{(n_j, A_j)\}, n_j \ge N, A_j \in \mathcal{T}_{n_j,\epsilon}^{\mathbf{a}}$, and $\bigcup_{(n_j,A_j)\in\Gamma} A_j \supset Z$. The quantity $\Lambda^{\mathbf{a}}(Z, \epsilon, s, N)$ does not decrease with *N*, hence the following limit exists:

$$\Lambda^{\mathbf{a}}(Z,\epsilon,s) = \lim_{N \to \infty} \Lambda^{\mathbf{a}}(Z,\epsilon,s,N).$$

There exists a critical value of the parameters, which we will denote by $h^{\mathbf{a}}(Z, \epsilon)$, where $\Lambda^{\mathbf{a}}(Z, \epsilon, s)$ jumps from ∞ to 0, i.e

$$\Lambda^{\mathbf{a}}(Z,\epsilon,s) = \begin{cases} 0 & \text{if } s > h^{\mathbf{a}}(Z,\epsilon) \\ \infty & \text{if } s < h^{\mathbf{a}}(Z,\epsilon). \end{cases}$$

Clearly, $h^{\mathbf{a}}(Z, \epsilon)$ does not decrease with ϵ , and hence the following limit exists:

$$h^{\mathbf{a}}(Z) = \lim_{\epsilon \to 0} h^{\mathbf{a}}(Z, \epsilon).$$

Definition 2.3. We define the weighted lower (upper) local (pointwise) entropies as follows:

$$\underline{h}_{\mu}^{\mathbf{a}}(T_{1}, x) = \lim_{\epsilon \to 0} \liminf_{n \to \infty} -\frac{1}{n} \log \mu(B_{n}^{\mathbf{a}}(x, \epsilon)),$$

$$\overline{h}_{\mu}^{\mathbf{a}}(T_{1}, x) = \lim_{\epsilon \to 0} \limsup_{n \to \infty} -\frac{1}{n} \log \mu(B_{n}^{\mathbf{a}}(x, \epsilon)).$$

We say that the weighted local entropy exists at *x* if

$$\underline{h}^{\mathbf{a}}_{\mu}(T_1, x) = \overline{h}^{\mathbf{a}}_{\mu}(T_1, x).$$

In this case the common value will be denoted by $h^{a}_{\mu}(T_{1}, x)$. Similar to the Brin–Katok formula in [3], Feng and Huang [5] showed the weighted version of Brin–Katok formula as follows.

Theorem 2.1 [5]. For each ergodic measure $\mu \in M(X_1, T_1)$, we have

$$\lim_{\epsilon \to 0} \liminf_{n \to \infty} \frac{-\log \mu(B_n^{\mathbf{a}}(x,\epsilon))}{n}$$
$$= \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{-\log \mu(B_n^{\mathbf{a}}(x,\epsilon))}{n} = h_{\mu}^{\mathbf{a}}(T_1)$$

for
$$\mu$$
-a.e., $x \in X_1$.

Let $\mu \in M(X_1, T_1)$ be an invariant Borel measure. For $\alpha \ge 0$, define

$$K_{\alpha}(\mu) = \{x \in X_1 : h^{\mathbf{a}}_{\mu}(T_1, x) = \alpha\}.$$

In this paper, we are interested in local entropies and spectra associated with the weighted Bowen ball. More precisely, we study the size of the set $K_{\alpha}(\mu)$.

Download English Version:

https://daneshyari.com/en/article/5499743

Download Persian Version:

https://daneshyari.com/article/5499743

Daneshyari.com