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The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and 

the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differ- 

ential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–

Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both 

equations. 
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1. Introduction 

Several decades ago, more generalized forms of differential 

equations were described as fractional differential equations. Vari- 

ous phenomena in many natural and social science fields like en- 

gineering, geology, economics, meteorology, chemistry and physics 

are modeled by those equations [1,2] . The descriptions of diffu- 

sion, diffusive convection, Fokker–Plank type, evolution, and other 

differential equations are expanded by using fractional derivatives. 

Some well known fractional PDEs (FPDE) in literature can be listed 

as diffusion equation, nonlinear Schrödinger equation, Ginzburg–

Landau equation, Landau–Lifshitz, Boussinesq equations, etc [2] . 

Even though there exist general methods for solutions of lin- 

ear PDEs, the class of nonlinear PDEs has usually exact solutions. 

Sometimes it is also possible to obtain soliton-type solitary wave 

solution, which behaves like particles, that is, maintains its shape 

with constant speed and preserves its shape after collision with 

another soliton. The famous nonlinear PDEs having soliton solu- 

tions in literature are Korteweg-de Vries and Schrödinger equa- 

tions. Soliton type solutions have great importance in optics, fluid 

dynamics, propagation of surface waves, and many other fields of 

physics and various engineering branches. 
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The integer ordered equation of the form 

U t (x, t) − U(x, t) U x (x, t) − U xxt (x, t) = 0 (1) 

was named as the Equal-width Equation (EWE) by Morrison et al. 

[3] due to having traveling wave solutions containing sech 

2 
func- 

tion. The EWE has only lowest three polynomial conservation laws 

and they were determined in the same study. The single traveling 

wave solutions to the generalized form of the EWE are classified by 

implementing the complete discrimination system for polynomial 

[4] . Owing to having analytical solutions, the EWE also attracts 

many researchers studying numerical techniques for partial differ- 

ential equations. So far, various numerical methods covering dif- 

ferential quadrature, Galerkin and meshless methods [5] , lumped 

Galerkin method based on B-splines [6,7] , septic B-spline collo- 

cation [8] , spectral method [9] , exponential cubic B-spline [10] , 

moving least squares collocation [11] , the method of lines based 

on meshless kernel [12] have been implemented to solve different 

problems constructed with the EWE. 

Recently, parallel to developments in symbolic computations, 

lots of new techniques have been proposed to solve nonlinear PDEs 

exactly. Some of those methods covering the first integral, the sub- 

equation, Kudryashov, sine-cosine and ansatz methods have been 

applied for exact solutions for not only integer ordered and but 

also fractional ordered PDEs [13–20] . Some recent studies includ- 

ing various methods to solve FPDEs exactly in literature can be 
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found in [21–38] . Besides these developments in the exact or an- 

alytical solution fields, some semi numerical techniques have also 

appeared to solve various fractional PDEs [39–43] . 

This study aims to generate exact solutions to the fractional 

equal-widthequation (FEWE) and the fractional modified fractional 

equal-width equation (FMEWE) of the forms 

D 

β
t u (x, t) + εD 

β
x u 

2 (x, t) − δD 

3 β
xxt u (x, t) = 0 

(2) 

and 

D 

β
t u (x, t) + εD 

β
x u 

3 (x, t) − δD 

3 β
xxt u (x, t) = 0 

(3) 

where ε and δ are real parameters and the modified Riemann–

Liouville derivative (MRLD) operator of order β for the continuous 

function u : R → R defined as 

D 

γ
x u (x ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 
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1 

�(−γ ) 

x ∫ 
0 

(x − η) −γ −1 u (η) dη, γ < 0 

1 

�(−γ ) 

d 

dx 

x ∫ 
0 

(x − η) −γ [ u (η) − u (0)] dη, 0 < γ < 1 

(u 

(p) (x )) (γ −p) , p ≤ γ ≤ p + 1 , p ≥ 1 

(4) 

where the Gamma function is given as 

�(γ ) = lim 

p→∞ 

p! p γ

γ (γ + 1)(γ + 2) . . . (γ + p) 
(5) 

[44] . 

2. The properties of the MRLD and methodology of solution 

Some properties of the MRLD can be listed as 

D 

β
x x 

c = 

�(1 + c) 

�(1 + c − β) 
x c−β

D 

β
x { aw (x ) + bv (x ) } = aD 

β
x { w (x ) } + bD 

β
x { v (x ) } (6) 

where a, b are constants and c ∈ R [45] . 

Consider the nonlinear FPDEs of the general implicit form 

F (u, D 

β
t u, D 

θ
x u, D 

β
t D 

β
t u, D 

β
t D 

β
t u, D 

β
t D 

θ
x u, D 

θ
x D 

θ
x u, . . . ) = 0 , 

0 < β, θ < 1 (7) 

where β and θ are orders of the MRLD of the function u = u (x, t) . 

The FCT 

u (x, t) = U(ζ ) , ζ = 

k̄ x θ

�(1 + θ ) 
− c̄ t β

�(1 + β) 
(8) 

where k̄ and c̄ are nonzero constants reduces (7) to an integer or- 

dered ODE [46] . One should note that the chain rule can be calcu- 

lated as 

D 

β
t u = σ1 

dU 

dζ
D 

β
t ζ

D 

β
x u = σ2 

dU 

dζ
D 

β
x ζ (9) 

where σ 1 and σ 2 fractional indexes [47] . Substitution of the 

(8) into (7) and usage of chain rule defined (9) converts (7) to an 

ODE of the form 

G 

(
U, 

dU 

dζ
, 

d 2 U 

dζ 2 
, . . . 

)
= 0 (10) 

3. Solutions for fractional EW equation 

Consider the FEWE equation 

D 

β
t u (x, t) + εD 

β
x u 

2 (x, t) − δD 

3 β
xxt u (x, t) = 0 

t > 0 , 0 < β ≤ 1 (11) 

The use of the transformation (8) reduces the FEWE (11) to 

−cU 

′ + εk (U 

2 ) ′ + δck 2 U 

′′′ = 0 (12) 

where k = k̄ σ2 and c = c̄ σ1 

3.1. Bright soliton solution 

Let A , k̄ and c̄ be arbitrary constants. Then, assume that 

U(ζ ) = A sech 

p ζ , ζ = 

k̄ x β

�(1 + β) 
− c̄ t β

�(1 + β) 
(13) 

solves Eq. (12) . Substituting this solution into the Eq. (12) leads 

to 

(−δ cpk 2 A − δ cp 2 k 2 A ) sech 

p+2 ζ + εkA 

2 sech 

2 p ζ

+(δck 2 p 2 − cA ) sech 

p ζ = 0 (14) 

Assuming the powers are equal to each other such as p + 2 = 2 p, p 

is determined as 2. Substituting this p value into Eq. (14) reduces 

it to (
−6 δ ck 2 A + ε kA 

2 
)

sech 

4 ζ + 

(
4 δ ck 2 A − cA 

)
sech 

2 ζ = 0 (15) 

and solving Eq. (15) for nonzero sech 

4 ζ and sech 

2 ζ gives 

A = ∓3 c 

√ 

δ

ε

k = ∓1 

2 

√ 

1 

δ

(16) 

Thus the bright soliton solution is formed as 

u (x, t) = A sech 

2 

(
k̄ x β

�(1 + β) 
− c̄ t β

�(1 + β) 

)
(17) 

where A is given in (16) . The simulations of motion of bright soli- 

tons for various values of β are demonstrated in Fig. 1 (a)–(d) for 

δ = 1 , ε = 3 and c = 1 . When β is smaller such as β = 0 . 25 , the 

shape of known single positive solitary is not clear. Increasing β to 

0.50 makes the sides of the wave sharper when compared with the 

case β = 0 . 25 . When β = 0 . 75 , the shape is more close to a pos- 

itive single solitary wave. In the final case, the sides of the wave 

sharp, the shape is narrower for β = 1 . It should also be pointed 

out that the velocity of the wave decreases when β increases. 

3.2. Singular solution 

Let 

U(ζ ) = A csch 

p ζ , ζ = 

k̄ x β

�(1 + β) 
− c̄ t β

�(1 + β) 
(18) 

be a solution for the Eq. (12) with constants A , k̄ and c̄ . Since the 

solution has to satisfy the Eq. (12) , substituting it into the equation 

gives (
δpck 2 A + δp 2 ck 2 A 

)
csch 

p+2 ζ + 

(
δp 2 ck 2 A − Ac 

)
csch 

p ζ

+ εkA 

2 csch 

2 p ζ = 0 (19) 

Choosing p + 2 = 2 p gives p = 2 and reduces (19) to (
6 δ ck 2 A + ε kA 

2 
)

csch 

4 ζ + 

(
4 δ ck 2 A − Ac 

)
csch 

2 ζ = 0 (20) 

Solution of (20) for nonzero csch function give 

A = ±3 c 
√ 

δ

ε
k = ±1 

2 

√ 

1 

δ
(21) 

Thus the singular solution of Eq. (12) becomes 

U(ζ ) = A csch 

p k̄ x β

�(1 + β) 
− c̄ t β

�(1 + β) 
(22) 
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