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a b s t r a c t 

The correlation function of the trajectory exactly at the Feigenbaum point of the logistic map is investi- 

gated and checked by numerical experiments. Taking advantage of recent closed analytical results on the 

symbol-to-symbol correlation function of the generating partition, we are in position to justify the deep 

algorithmic structure of the correlation function apart from numerical constants. A generalization is given 

for arbitrary m · 2 ∞ Feigenbaum attractors. 
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1. Introduction 

Recently, the study of Complex Systems has gained significant 

attention. One of the basic aspects of this progress is related with 

the understanding of correlations in and between such complex 

systems, which is realized through the use of different complexity 

measures. Among these, one can mention the transinformation [1–

3] , the block entropies [4–11] different types of correlation func- 

tions [12–17] and number-theoretic notions [6,18] . 

One of the Paradigms of Complex Systems is the logistic map. 

The logistic map has a simple definition but presents complex be- 

havior when fine tuning the control parameter values. In particular, 

after Feigenbaum’s work, the period-doubling route to chaos has 

been fairly understood. Also, connections with the theory of sec- 

ond order phase transitions (critical phenomena) have been estab- 

lished and scaling relations have been reported nearby the accu- 

mulation point (also called Feigenbaum Point (FP)) with and with- 

out the presence of external noise. Furthermore, cantorian fractal 

structures have been revealed in the transition point connecting 

the physics of the non-chaotic attractor with self-similarity [19–

25] . Recently also, a direct connection with Experimental Mathe- 

matics has been established, too [26] . 

On the other hand, in Non-linear physics, the importance of 

the study of the correlation function has been realized from the 
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very beginning. Particularly inspiring have been the works of Ru- 

elle [27] , Daems and Nicolis [28] , and Alonso et al. [12] , for the 

case of resonances of chaotic dynamical systems. In addition, based 

on the analogies between the period doubling transition and criti- 

cal phenomena, Schuster has done a guess on the functional form 

of the correlation function of the trajectory [17] . Indeed, according 

to his arguments the correlation function should follow a power 

law behavior. In contrast, here, we demonstrate that the correla- 

tion function possesses a stratified structure. More recently, using 

the Feigenbaum renormalization group transformation it has been 

shown [29] that the correlation function of the trajectory in the 

one dimensional nonlinear dissipative logistic map is made of a 

family of power laws with a common scaling factor given by the 

Feigenbaum constant α. In the present work in order to extract the 

form of the correlation function of the trajectory we propose some 

more elaborated arguments, using a different approach which is 

based on the structure of the symbol-to-symbol correlation func- 

tion [9] , that is the correlation function of symbolic dynamics. 

After establishing rigorously in a previous work [9] the detailed 

form of the symbol-to-symbol correlation function we turn now 

our attention to the structure of the correlation function of the tra- 

jectory. To be more concrete, taking advantage from the analytic 

form of the symbol-to symbol correlation function and present- 

ing simple arguments we shall show that one can extract up to 

a good approximation, that is apart from numerical constants, the 

detailed structure for the correlation function of the trajectory. The 

above investigation is mainly supported by a detailed numerical 
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Fig. 1. The bifurcation diagram for the logistic map for the superstable 2 n -cycles. It 

is shown the control parameter values r i for the first few bifurcation points and the 

values R i for the superstable orbits. 

study which takes into account a large enough statistical sample of 

the logistic map. In this manner, we can justify the analytic form of 

the correlation function of the trajectory from first principles using 

the Metropolis-Stein and Stein algorithm (MSS algorithm), apart 

from numerical constants, which depend on the detailed functional 

form of the map. Furthermore, we make an attempt to generalize 

these results for an arbitrary m · 2 ∞ accumulation point [30] , for 

m = 2 , 3 , . . . , which correspond to the accumulation points of the 

bifurcation tree [17,31] (see also Fig. 1 ). Finally, a general form for 

the correlation function of the trajectory and that obtained from 

the symbolic dynamics is also suggested. We believe that our re- 

sults will inspire similar investigations on non-unimodal maps and 

give further insight providing new complexity measures on real ex- 

perimental time-series. 

The paper is organized as follows. In Section 2 we introduce 

the logistic map and the definitions of different types of corre- 

lation functions that will be used. In Section 3 we present our 

careful numerical experimentation for the symbol-to-symbol cor- 

relation function and for the correlation function of the trajec- 

tory at the (first) accumulation point. As it is shown those func- 

tions satisfy simple numerical prescriptions, which are explicitly 

outlined. In addition, we propose some simple arguments which, 

up to a good approximation, allow for the justification of the 

functional form of the correlation function of the trajectory from 

the symbol-to-symbol correlation function apart from arithmetical 

constants in a systematic basis. We then present analogous results 

and generalizations for the m · 2 ∞ accumulation points. Finally, in 

Section 4 we draw the main conclusions and discuss future plans. 

2. The logistic map 

The logistic map is the archetype of a Complex System. Let us 

elaborate. We introduce the logistic map in its familiar form 

x n +1 = r x n (1 − x n ) , (1) 

where r is the control parameter value and n denotes the respec- 

tive iteration of the map. For the logistic map in this form the gen- 

erating partition is easily computed, following an argument dating 

back to the French Mathematician Gaston Julia. To be more spe- 

cific, for f (x ) = rx (1 − x ) the equation f ′ (c) = 0 gives c = 0.5, so 

that the partition of the phase space (which in this case coincides 

with the unit interval I = [0,1]) L = [0,0.5] and R = (0.5,1] is a 

generating one (see also [32] for a more rigorous definition). No- 

tice that according to Metropolis et al. [33] the information content 

of the symbolic trajectory is the “minimum distinguishing informa- 

tion”. Needless to say, in this representation the logistic map can 

be viewed as an abstract information generator. 

In particular, the period doubling route to chaos has been fairly 

studied and it is by now well understood. These studies led to the 

occurrence of the two Feigenbaum constants α and δ which can be 

defined by an approximate real space renormalization procedure. 

Especially, the constant δ is related with the spacing in the con- 

trol parameter space of the successive values of occurrence of the 

superstable periodic orbits and can be roughly estimated by the bi- 

furcation diagram [22,23] . If we denote as { R n } this set of values, δ
is defined as 

δ = lim 

n →∞ 

R n − R n −1 

R n +1 − R n 
, (2) 

and for the quadratic map reads 

δ � 4 . 669201609102990 . . . . (3) 

Moreover, the constant α is related to the rescaling of the period 

doubling functional composition law and its value for the logistic 

map reads 

α = − lim 

n →∞ 

d n 

d n +1 

� −2 . 5029078750095892 . . . . (4) 

Finally, note that the constants α, δ are related as it can be shown 

by using renormalization group arguments (see [16,34] and refer- 

ences therein). The values of the above two constants depend only 

on the order of the maximum and have long been studied. They 

are thus, for instance, universal for quadratic maps irrespectively 

of the exact way one writes down the map. 

Fig. 1 presents the control parameter values of the bifurcation 

points denoted as r 1 , r 2 , r 3 , ... while the corresponding values for 

the superstable orbits are depicted as R 1 , R 2 , R 3 , .... The values of 

d i figuring in the definition of the Feigenbaum constant α are also 

shown. Note here that Feigenbaum and successors have shown that 

Eq. (2) , holds if instead of R i we use r i . 

After the above brief introduction of the logistic map and its 

properties, we shall next define the (un-normalized) correlation 

function of the trajectory as 

C un (m ) = lim 

N→∞ 

1 

N 

N−1 ∑ 

i =0 

x i + m 

x i , (5) 

where the deviation from the real value of the map at the i th iter- 

ation is given by x i = f i ( x 0 ) − x and the corresponding mean value 

of the map taking into account N iterations (sample) is denoted by 

x = lim N→∞ 

1 
N 

∑ N−1 
i =0 f i ( x 0 ) . Also, in direct analogy with the above 

defined un-normalized correlation function one can also introduce 

here the normalized correlation function 

C(m ) = 

C un (m ) 

C un (0) 
= 

C un (m ) 

σ 2 
, (6) 

where σ is the mean standard deviation, which normalizes the sta- 

tistical data. 

From the above definitions follows that C ( m ) (or equally C un ( m )) 

yields another measure for the irregularity of the sequence of iter- 

ates x 0 , f ( x 0 ), f 2 ( x 0 ), ... etc. It tells us how much the deviations of 

the iterates from their average value, x i = x i − x that are m steps 

apart (i.e. x i + m 

and x i ) “know” about each other, on the average. 

Another remark here is that if C ( m ) � 0 as m → ∞ then the sys- 

tem does not have the mixing property. 

We should here note that the problem of determining the cor- 

relation function of an arbitrary dynamical system is difficult to 

calculate in the general case. This is the reason to resort to other 

computable observables such as the symbol-to-symbol correlation 

function [28] . Thus, in direct analogy with the correlation function 

of the trajectory one can introduce the un-normalized symbol-to- 

symbol correlation function as 

K un (m ) = lim 

N→∞ 

1 

N 

N−1 ∑ 

i =0 

y i + m 

y i , (7) 
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